2,343 research outputs found

    A cosmogenic view of erosion, relief generation, and the age of faulting in southern Africa

    Get PDF
    Southernmost Africa, with extensive upland geomorphic surfaces, deep canyons, and numerous faults, has long interested geoscientists. A paucity of dates and low rates of background seismicity make it challenging to quantify the pace of landscape change and determine the likelihood and timing of fault movement that could raise and lower parts of the landscape and create associated geohazards. To infer regional rates of denudation, we measured 10Be in river sediment samples and found that south-central South Africa is eroding ∼5 m m.y.-1, a slow erosion rate consistent with those measured in other non-tectonically active areas, including much of southern Africa. To estimate the rate at which extensive, fossil, upland, silcrete-mantled pediment surfaces erode, we measured 10Be and 26Al in exposed quartzite samples. Undeformed upland surfaces are little changed since the Pliocene; some have minimum exposure ages exceeding 2.5 m.y. (median, 1.3 m.y.) and maximum erosion rates of \u3c0.2 m m.y.-1 (median, 0.34 m m.y.-1), consistent with no Quaternary movement on faults that displace the underlying quartzite but not the silcrete cover. We directly dated a recent displacement event on the only recognized Quaternary-active fault in South Africa, a fault that displaces both silcrete and the underlying quartzite. The concentrations of 10Be in exposed fault scarp samples are consistent with a 1.5 m displacement occurring ca. 25 ka. Samples from this offset upland surface have lower minimum limiting exposure ages and higher maximum erosion rates than those from undeformed pediment surfaces, consistent with Pleistocene earthquakes and deformation reducing overall landscape stability proximal to the fault zone. Rates of landscape change on the extensive, stable, silcretized, upland pediment surfaces are an order of magnitude lower than basin-average erosion rates. As isostatic response to regional denudation uplifts the entire landscape at several meters per million years, valleys deepen, isolating stable upland surfaces and creating the spectacular relief for which the region is known

    Launch Vehicle Manual Steering with Adaptive Augmenting Control:In-Flight Evaluations of Adverse Interactions Using a Piloted Aircraft

    Get PDF
    An Adaptive Augmenting Control (AAC) algorithm for the Space Launch System (SLS) has been developed at the Marshall Space Flight Center (MSFC) as part of the launch vehicle's baseline flight control system. A prototype version of the SLS flight control software was hosted on a piloted aircraft at the Armstrong Flight Research Center to demonstrate the adaptive controller on a full-scale realistic application in a relevant flight environment. Concerns regarding adverse interactions between the adaptive controller and a potential manual steering mode were also investigated by giving the pilot trajectory deviation cues and pitch rate command authority, which is the subject of this paper. Two NASA research pilots flew a total of 25 constant pitch rate trajectories using a prototype manual steering mode with and without adaptive control, evaluating six different nominal and off-nominal test case scenarios. Pilot comments and PIO ratings were given following each trajectory and correlated with aircraft state data and internal controller signals post-flight

    Adaptive Augmenting Control Flight Characterization Experiment on an F/A-18

    Get PDF
    The NASA Marshall Space Flight Center (MSFC) Flight Mechanics and Analysis Division developed an Adaptive Augmenting Control (AAC) algorithm for launch vehicles that improves robustness and performance by adapting an otherwise welltuned classical control algorithm to unexpected environments or variations in vehicle dynamics. This AAC algorithm is currently part of the baseline design for the SLS Flight Control System (FCS), but prior to this series of research flights it was the only component of the autopilot design that had not been flight tested. The Space Launch System (SLS) flight software prototype, including the adaptive component, was recently tested on a piloted aircraft at Dryden Flight Research Center (DFRC) which has the capability to achieve a high level of dynamic similarity to a launch vehicle. Scenarios for the flight test campaign were designed specifically to evaluate the AAC algorithm to ensure that it is able to achieve the expected performance improvements with no adverse impacts in nominal or nearnominal scenarios. Having completed the recent series of flight characterization experiments on DFRC's F/A-18, the AAC algorithm's capability, robustness, and reproducibility, have been successfully demonstrated. Thus, the entire SLS control architecture has been successfully flight tested in a relevant environment. This has increased NASA's confidence that the autopilot design is ready to fly on the SLS Block I vehicle and will exceed the performance of previous architectures

    In-Flight Suppression of an Unstable F/A-18 Structural Mode Using the Space Launch System Adaptive Augmenting Control System

    Get PDF
    NASA's Space Launch System (SLS) Flight Control System (FCS) includes an Adaptive Augmenting Control (AAC) component which employs a multiplicative gain update law to enhance the performance and robustness of the baseline control system for extreme off-nominal scenarios. The SLS FCS algorithm including AAC has been flight tested utilizing a specially outfitted F/A-18 fighter jet in which the pitch axis control of the aircraft was performed by a Non-linear Dynamic Inversion (NDI) controller, SLS reference models, and the SLS flight software prototype. This paper describes test cases from the research flight campaign in which the fundamental F/A-18 airframe structural mode was identified using post-flight frequency-domain reconstruction, amplified to result in closed loop instability, and suppressed in-flight by the SLS adaptive control system

    In-Flight Suppression of a Destabilized F/A-18 Structural Mode Using the Space Launch System Adaptive Augmenting Control System

    Get PDF
    NASA's Space Launch System (SLS) Flight Control System (FCS) includes an Adaptive Augmenting Control (AAC) component which employs a multiplicative gain update law to enhance the performance and robustness of the baseline control system for extreme off nominal scenarios. The SLS FCS algorithm including AAC has been flight tested utilizing a specially outfitted F/A-18 fighter jet in which the pitch axis control of the aircraft was performed by a Non-linear Dynamic Inversion (NDI) controller, SLS reference models, and the SLS flight software prototype. This paper describes test cases from the research flight campaign in which the fundamental F/A-18 airframe structural mode was identified using frequency-domain reconstruction of flight data, amplified to result in closed loop instability, and suppressed in-flight by the SLS adaptive control system

    Reconstruction of the joint state of a two-mode Bose-Einstein condensate

    Get PDF
    We propose a scheme to reconstruct the state of a two-mode Bose-Einstein condensate, with a given total number of atoms, using an atom interferometer that requires beam splitter, phase shift and non-ideal atom counting operations. The density matrix in the number-state basis can be computed directly from the probabilities of different counts for various phase shifts between the original modes, unless the beamsplitter is exactly balanced. Simulated noisy data from a two-mode coherent state is produced and the state is reconstructed, for 49 atoms. The error can be estimated from the singular values of the transformation matrix between state and probability data.Comment: 4 pages (REVTeX), 5 figures (PostScript

    Acute myopathy secondary to oral steroid therapy in a 49-year-old man: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Acute myopathy caused by oral corticosteroids is rare. We present a case of myopathy occurring after two doses of methylprednisolone. Typically, acute steroid myopathy occurs with therapy using intravenous corticosteroids at high doses. Acute myopathy developing very early in the course of treatment with oral corticosteroids has been reported only once in the literature. Corticosteroid therapy may be complicated by myopathy, usually chronic, after prolonged high-dose therapy. Acute myopathy caused by exogenous corticosteroids is rare, usually with intravenous corticosteroids at high doses.</p> <p>Case presentation</p> <p>A 49-year-old Caucasian man developed acute myopathy after taking oral methylprednisolone for only two days, 24 mg on day 1 and 20 mg on day 2. He discontinued the medication because of new-onset myalgias and lethargy on day 3 and was seen in our clinic four days after beginning therapy. He completely recovered in four weeks by discontinuing the corticosteroids.</p> <p>Conclusion</p> <p>Among the many complications of corticosteroid therapy, acute myopathy is very rare. It requires prompt recognition and adjustment of therapy.</p

    Launch Vehicle Manual Steering with Adaptive Augmenting Control In-flight Evaluations of Adverse Interactions Using a Piloted Aircraft

    Get PDF
    An adaptive augmenting control algorithm for the Space Launch System has been developed at the Marshall Space Flight Center as part of the launch vehicles baseline flight control system. A prototype version of the SLS flight control software was hosted on a piloted aircraft at the Armstrong Flight Research Center to demonstrate the adaptive controller on a full-scale realistic application in a relevant flight environment. Concerns regarding adverse interactions between the adaptive controller and a proposed manual steering mode were investigated by giving the pilot trajectory deviation cues and pitch rate command authority. Two NASA research pilots flew a total of twenty five constant pitch-rate trajectories using a prototype manual steering mode with and without adaptive control

    Chemical shark repellent: Myth or fact? The effect of a shark necromone on shark feeding behaviour

    Get PDF
    a b s t r a c t Since 1942, the search for an effective chemical shark repellent has been ongoing research concern in the United States. A long-standing anecdote that sharks avoid areas containing decomposing shark tissue has initiated new interest in identifying trace chemical alarm signals produced during decomposition (necromones). A commercially-sourced shark necromone produced from putrefied shark tissue was evaluated over a five-year period in South Bimini, Bahamas. Competitively-feeding populations of Caribbean reef sharks (Carcharhinus perezi) and blacknose sharks (Carcharhinus acronotus) were exposed to necromones using pressurized aerosol canisters at the surface. Shark density estimations were made at the initial, 1 min and 5 min intervals after preliminary exposure along with continuous exposure of feeding stimulus. In both species, an unambiguous halt in feeding behavior was observed within 1 min after exposure of the necromone. For aerosol delivery, a 150 mL dose of the necromone from a single aerosol canister is able to halt all feeding activity in a combined population of C. perezi and C. acronotus. Shark necromones induced a spectacular alarm response in interacting sharks resulting in a temporary evacuation of an area containing feeding stimuli. Additionally, sharks were not deterred by alternative treatment presentations of 10% weight percent (w/w) aqueous urea, 10% w/w oleic acid in ethanol, or water buffered to pH 8.5. Habituation to the necromone was not observed for repeated tests at the same location. In all experiments, the presence of a shark necromone did not produce a similar aversion response for teleosts as observed in C. perezi or C. acronotus; however, anecdotal observations demonstrate that teleosts increased their feeding rate in the presence of the necromone. Experimental controls using denatured ethanol or water confirmed that feeding sharks were not deterred by bubbles, sound, or the solvents used to extract the necromones. Comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry indicates that the necromone is a complex solution rich in amino acids and putrefaction products. Experiments demonstrate that the key chemical component responsible for the alarm response is within these amino acids and/or putrefaction products, but further experimentation is needed to more accurately identify the active ingredient. Shark necromones hold particular promise for use in shark bycatch reduction and conservation. The existence of a putative chemical shark repellent has been confirmed
    corecore