593 research outputs found
Real-time dynamics of lattice gauge theories with a few-qubit quantum computer
Gauge theories are fundamental to our understanding of interactions between
the elementary constituents of matter as mediated by gauge bosons. However,
computing the real-time dynamics in gauge theories is a notorious challenge for
classical computational methods. In the spirit of Feynman's vision of a quantum
simulator, this has recently stimulated theoretical effort to devise schemes
for simulating such theories on engineered quantum-mechanical devices, with the
difficulty that gauge invariance and the associated local conservation laws
(Gauss laws) need to be implemented. Here we report the first experimental
demonstration of a digital quantum simulation of a lattice gauge theory, by
realising 1+1-dimensional quantum electrodynamics (Schwinger model) on a
few-qubit trapped-ion quantum computer. We are interested in the real-time
evolution of the Schwinger mechanism, describing the instability of the bare
vacuum due to quantum fluctuations, which manifests itself in the spontaneous
creation of electron-positron pairs. To make efficient use of our quantum
resources, we map the original problem to a spin model by eliminating the gauge
fields in favour of exotic long-range interactions, which have a direct and
efficient implementation on an ion trap architecture. We explore the Schwinger
mechanism of particle-antiparticle generation by monitoring the mass production
and the vacuum persistence amplitude. Moreover, we track the real-time
evolution of entanglement in the system, which illustrates how particle
creation and entanglement generation are directly related. Our work represents
a first step towards quantum simulating high-energy theories with atomic
physics experiments, the long-term vision being the extension to real-time
quantum simulations of non-Abelian lattice gauge theories
Recommended from our members
SLURRY-BASED BINDER JETTING OF CERAMIC CASTING CORES
The production of complex sand cores to represent internal contours in castings is typically
achieved by powder-based binder jetting. However, a trade-off between the load-bearing capacity
during casting and the subsequent removability from the cast part leads to design limitations.
Slurry-based binder jetting allows the processing of fine powders and the economical production
of sinterable ceramic cores. Its performance, potential, and challenges are presented in the context
of the foundry process chain. As drying affects material properties and process efficiency, detailed
investigations are carried out to control the properties via drying. Average roughness depths of 1.2
”m and flexural strengths of 25 MPa were achieved using aqueous quartz slurry and appropriate
process parameters. By incorporating predetermined breaking lines into the internal geometry of
hollow casting core structures, the stress generated during the solidification of the cast metal
induces decoring. A promising process chain is outlined for producing efficient, close-contour
coolings in high-performance castings and digital code tags for part tracking in foundries.Mechanical Engineerin
A two-dimensional, two-electron model atom in a laser pulse: exact treatment, single active electron-analysis, time-dependent density functional theory, classical calculations, and non-sequential ionization
Owing to its numerical simplicity, a two-dimensional two-electron model atom,
with each electron moving in one direction, is an ideal system to study
non-perturbatively a fully correlated atom exposed to a laser field. Frequently
made assumptions, such as the ``single active electron''- approach and
calculational approximations, e.g. time dependent density functional theory or
(semi-) classical techniques, can be tested. In this paper we examine the
multiphoton short pulse-regime. We observe ``non-sequential'' ionization, i.e.\
double ionization at lower field strengths as expected from a sequential,
single active electron-point of view. Since we find non-sequential ionization
also in purely classical simulations, we are able to clarify the mechanism
behind this effect in terms of single particle trajectories. PACS Number(s):
32.80.RmComment: 10 pages, 16 figures (gzipped postscript), see also
http://www.physik.tu-darmstadt.de/tqe
Neutron-induced background by an alpha-beam incident on a deuterium gas target and its implications for the study of the 2H(alpha,gamma)6Li reaction at LUNA
The production of the stable isotope Li-6 in standard Big Bang
nucleosynthesis has recently attracted much interest. Recent observations in
metal-poor stars suggest that a cosmological Li-6 plateau may exist. If true,
this plateau would come in addition to the well-known Spite plateau of Li-7
abundances and would point to a predominantly primordial origin of Li-6,
contrary to the results of standard Big Bang nucleosynthesis calculations.
Therefore, the nuclear physics underlying Big Bang Li-6 production must be
revisited. The main production channel for Li-6 in the Big Bang is the
2H(alpha,gamma)6Li reaction. The present work reports on neutron-induced
effects in a high-purity germanium detector that were encountered in a new
study of this reaction. In the experiment, an {\alpha}-beam from the
underground accelerator LUNA in Gran Sasso, Italy, and a windowless deuterium
gas target are used. A low neutron flux is induced by energetic deuterons from
elastic scattering and, subsequently, the 2H(d,n)3He reaction. Due to the
ultra-low laboratory neutron background at LUNA, the effect of this weak flux
of 2-3 MeV neutrons on well-shielded high-purity germanium detectors has been
studied in detail. Data have been taken at 280 and 400 keV alpha-beam energy
and for comparison also using an americium-beryllium neutron source.Comment: Submitted to EPJA; 13 pages, 8 figure
A pulsed, mono-energetic and angular-selective UV photo-electron source for the commissioning of the KATRIN experiment
The KATRIN experiment aims to determine the neutrino mass scale with a
sensitivity of 200 meV/c^2 (90% C.L.) by a precision measurement of the shape
of the tritium -spectrum in the endpoint region. The energy analysis of
the decay electrons is achieved by a MAC-E filter spectrometer. To determine
the transmission properties of the KATRIN main spectrometer, a mono-energetic
and angular-selective electron source has been developed. In preparation for
the second commissioning phase of the main spectrometer, a measurement phase
was carried out at the KATRIN monitor spectrometer where the device was
operated in a MAC-E filter setup for testing. The results of these measurements
are compared with simulations using the particle-tracking software
"Kassiopeia", which was developed in the KATRIN collaboration over recent
years.Comment: 19 pages, 16 figures, submitted to European Physical Journal
Conserving Gapless Mean-Field Theory of a Multi-Component Bose-Einstein Condensate
We develop a mean-field theory for Bose-Einstein condensation of spin-1 atoms
with internal degrees of freedom. It is applicable to nonuniform systems at
finite temperatures with a plausible feature of satisfying the Hugenholtz-Pines
theorem and various conservation laws simultaneously. Using it, we clarify
thermodynamic properties and the excitation spectra of a uniform gas. The
condensate is confirmed to remain in the same internal state from T=0 up to
for both antiferromagnetic and ferromagnetic interactions. The
excitation spectra of the antiferromagnetic (ferromagnetic) interaction are
found to have only a single gapless mode, contrary to the prediction of the
Bogoliubov theory where three (two) of them are gapless. We present a detailed
discussion on those single-particle excitations in connection with the
collective excitations.Comment: 8 pages, 7 figures Minor errors remove
Arbitrary Choice of Basic Variables in Density Functional Theory. II. Illustrative Applications
Our recent theory (Ref. 1) enables us to choose arbitrary quantities as the
basic variables of the density functional theory. In this paper we apply it to
several cases. In the case where the occupation matrix of localized orbitals is
chosen as a basic variable, we can obtain the single-particle equation which is
equivalent to that of the LDA+U method. The theory also leads to the
Hartree-Fock-Kohn-Sham equation by letting the exchange energy be a basic
variable. Furthermore, if the quantity associated with the density of states
near the Fermi level is chosen as a basic variable, the resulting
single-particle equation includes the additional potential which could mainly
modify the energy-band structures near the Fermi level.Comment: 27 page
Physics with Coherent Matter Waves
This review discusses progress in the new field of coherent matter waves, in
particular with respect to Bose-Einstein condensates. We give a short
introduction to Bose-Einstein condensation and the theoretical description of
the condensate wavefunction. We concentrate on the coherence properties of this
new type of matter wave as a basis for fundamental physics and applications.
The main part of this review treats various measurements and concepts in the
physics with coherent matter waves. In particular we present phase manipulation
methods, atom lasers, nonlinear atom optics, optical elements, interferometry
and physics in optical lattices. We give an overview of the state of the art in
the respective fields and discuss achievements and challenges for the future
- âŠ