12 research outputs found

    Macrophage Survival Assay Using High Content Microscopy

    Get PDF
    Macrophages are phagocytic innate immune cells and are the main drivers of inflammation in tissue (Medzhitov, 2008). These cells are associated with cancer together with autoimmune, autoinflammatory, infectious, neurodegenerative and metabolic diseases (Ginhoux and Jung, 2014). In this context, the role of macrophages in inflammation is well-studied, however, the impact of macrophage survival in non-infectious and infectious diseases is largely unknown. Our study showed that the activation of certain pathogen-associated receptors (PRRs) can induce macrophage survival (Eren et al., 2016). We described a molecular mechanism that demonstrated how an obligate intracellular pathogen exploits PRR-induced cell survival (Eren et al., 2016). Thus, further studies are necessary to understand the role of macrophage survival in different disease settings

    Caspase-mediated cleavage of raptor participates in the inactivation of mTORC1 during cell death.

    Get PDF
    The mammalian target of rapamycin complex 1 (mTORC1) is a highly conserved protein complex regulating key pathways in cell growth. Hyperactivation of mTORC1 is implicated in numerous cancers, thus making it a potential broad-spectrum chemotherapeutic target. Here, we characterized how mTORC1 responds to cell death induced by various anticancer drugs such rapamycin, etoposide, cisplatin, curcumin, staurosporine and Fas ligand. All treatments induced cleavage in the mTORC1 component, raptor, resulting in decreased raptor-mTOR interaction and subsequent inhibition of the mTORC1-mediated phosphorylation of downstream substrates (S6K and 4E-BP1). The cleavage was primarily mediated by caspase-6 and occurred at two sites. Mutagenesis at one of these sites, conferred resistance to cell death, indicating that raptor cleavage is important in chemotherapeutic apoptosis

    Development of a semi-automated image-based high-throughput drug screening system.

    Get PDF
    We previously reported that the innate sensing of the endosymbiont <i>Leishmania</i> RNA virus 1 (LRV1) within <i>Leishmania (Viannia) guyanensis</i> through Toll-like receptor 3, worsens the pathogenesis of parasite infection in mice. The presence of LRV1 has been associated with the failure of first-line treatment in patients infected with LRV1 containing - <i>L. guyanensis</i> and - <i>L. braziliensis</i> parasites. Here, we established a semi-automated image-based high-throughput drug screening (HTDS) protocol to measure parasiticidal activity of the Prestwick chemical library in primary murine macrophages infected with LRV1-containing <i>L. guyanensis</i> . The two-independent screens generated 14 hit compounds with over sixty-nine percent reduction in parasite growth compared to control, at a single dose in both screens. Our screening strategy offers great potential in the search for new drugs and accelerates the discovery rate in the field of drug repurposing against <i>Leishmania</i> . Moreover, this technique allows the concomitant assessment of the effect of drug toxicity on host cell number

    Leishmania guyanensis parasites block the activation of the inflammasome by inhibiting maturation of IL-1β.

    Get PDF
    The various symptomatic outcomes of cutaneous leishmaniasis relates to the type and potency of its underlying inflammatory responses. Presence of the cytoplasmic javax.xml.bind.JAXBElement@52daeaa2 RNA virus-1 (LRV1) within javax.xml.bind.JAXBElement@be11ae5 , worsens lesional inflammation and parasite burden, as the viral dsRNA genome acts as a potent innate immunogen stimulating Toll-Like-Receptor-3 (TLR3). Here we investigated other innate pattern recognition receptors capable of reacting to dsRNA and potentially contributing to LRV1-mediated inflammatory pathology. We included the cytoplasmic dsRNA sensors, namely, the RIG-like receptors (RLRs) and the inflammasome-dependent and -independent Nod-like-receptors (NLRs). Our study found no role for RLRs or inflammasome-dependent NLRs in the pathology of javax.xml.bind.JAXBElement@3dfe8dc4 infection irrespective of its LRV1-status. Further, neither LRV1-bearing javax.xml.bind.JAXBElement@6e03fdb4 ( javax.xml.bind.JAXBElement@6b89952c +) nor LRV1-negative javax.xml.bind.JAXBElement@68bc8c8a ( javax.xml.bind.JAXBElement@2165acf4 ) activated the inflammasome javax.xml.bind.JAXBElement@507a0b31 . Interestingly, similarly to javax.xml.bind.JAXBElement@77fdd4e7 , javax.xml.bind.JAXBElement@7b29ce4e infection induced the up-regulation of the A20 protein, known to be involved in the evasion of inflammasome activation. Moreover, we observed that javax.xml.bind.JAXBElement@77a7dfd3 + promoted the transcription of inflammasome-independent NLRC2 (also called NOD2) and NLRC5. However, only NLRC2 showed some contribution to LRV1-dependent pathology. These data confirmed that the endosomal TLR3 pathway is the dominant route of LRV1-dependent signalling, thus excluding the cytosolic and inflammasome pathways. We postulate that avoidance of the inflammasome pathways is likely an important mechanism of virulence in javax.xml.bind.JAXBElement@77047195 infection irrespective of the LRV1-status

    Type I interferons induced by endogenous or exogenous viral infections promote metastasis and relapse of leishmaniasis.

    Get PDF
    The presence of the endogenous <i>Leishmania</i> RNA virus 1 (LRV1) replicating stably within some parasite species has been associated with the development of more severe forms of leishmaniasis and relapses after drug treatment in humans. Here, we show that the disease-exacerbatory role of LRV1 relies on type I IFN (type I IFNs) production by macrophages and signaling in vivo. Moreover, infecting mice with the LRV1-cured <i>Leishmania guyanensis</i> ( <i>LgyLRV1</i> <sup> <i>-</i> </sup> ) strain of parasites followed by type I IFN treatment increased lesion size and parasite burden, quantitatively reproducing the LRV1-bearing ( <i>LgyLRV1</i> <sup> <i>+</i> </sup> ) infection phenotype. This finding suggested the possibility that exogenous viral infections could likewise increase pathogenicity, which was tested by coinfecting mice with <i>L. guyanensis</i> and lymphocytic choriomeningitis virus (LCMV), or the sand fly-transmitted arbovirus Toscana virus (TOSV). The type I IFN antiviral response increased the pathology of <i>L. guyanensis</i> infection, accompanied by down-regulation of the IFN-γ receptor normally required for antileishmanial control. Further, LCMV coinfection of IFN-γ-deficient mice promoted parasite dissemination to secondary sites, reproducing the <i>LgyLRV1</i> <sup> <i>+</i> </sup> metastatic phenotype. Remarkably, LCMV coinfection of mice that had healed from <i>L. guyanensis</i> infection induced reactivation of disease pathology, overriding the protective adaptive immune response. Our findings establish that type I IFN-dependent responses, arising from endogenous viral elements (dsRNA/LRV1), or exogenous coinfection with IFN-inducing viruses, are able to synergize with New World <i>Leishmania</i> parasites in both primary and relapse infections. Thus, viral infections likely represent a significant risk factor along with parasite and host factors, thereby contributing to the pathological spectrum of human leishmaniasis

    Mammalian Innate Immune Response to a Leishmania-Resident RNA Virus Increases Macrophage Survival to Promote Parasite Persistence.

    Get PDF
    Some strains of the protozoan parasite Leishmania guyanensis (L.g) harbor a viral endosymbiont called Leishmania RNA virus 1 (LRV1). LRV1 recognition by TLR-3 increases parasite burden and lesion swelling in vivo. However, the mechanisms by which anti-viral innate immune responses affect parasitic infection are largely unknown. Upon investigating the mammalian host's response to LRV1, we found that miR-155 was singularly and strongly upregulated in macrophages infected with LRV1+ L.g when compared to LRV1- L.g. LRV1-driven miR-155 expression was dependent on TLR-3/TRIF signaling. Furthermore, LRV1-induced TLR-3 activation promoted parasite persistence by enhancing macrophage survival through Akt activation in a manner partially dependent on miR-155. Pharmacological inhibition of Akt resulted in a decrease in LRV1-mediated macrophage survival and consequently decreased parasite persistence. Consistent with these data, miR-155-deficient mice showed a drastic decrease in LRV1-induced disease severity, and lesional macrophages from these mice displayed reduced levels of Akt phosphorylation

    Exacerbated Leishmaniasis Caused by a Viral Endosymbiont can be Prevented by Immunization with Its Viral Capsid.

    Get PDF
    Recent studies have shown that a cytoplasmic virus called Leishmaniavirus (LRV) is present in some Leishmania species and acts as a potent innate immunogen, aggravating lesional inflammation and development in mice. In humans, the presence of LRV in Leishmania guyanensis and in L. braziliensis was significantly correlated with poor treatment response and symptomatic relapse. So far, no clinical effort has used LRV for prophylactic purposes. In this context, we designed an original vaccine strategy that targeted LRV nested in Leishmania parasites to prevent virus-related complications. To this end, C57BL/6 mice were immunized with a recombinant LRV1 Leishmania guyanensis viral capsid polypeptide formulated with a T helper 1-polarizing adjuvant. LRV1-vaccinated mice had significant reduction in lesion size and parasite load when subsequently challenged with LRV1+ Leishmania guyanensis parasites. The protection conferred by this immunization could be reproduced in naïve mice via T-cell transfer from vaccinated mice but not by serum transfer. The induction of LRV1 specific T cells secreting IFN-γ was confirmed in vaccinated mice and provided strong evidence that LRV1-specific protection arose via a cell mediated immune response against the LRV1 capsid. Our studies suggest that immunization with LRV1 capsid could be of a preventive benefit in mitigating the elevated pathology associated with LRV1 bearing Leishmania infections and possibly avoiding symptomatic relapses after an initial treatment. This novel anti-endosymbiotic vaccine strategy could be exploited to control other infectious diseases, as similar viral infections are largely prevalent across pathogenic pathogens and could consequently open new vaccine opportunities

    Leishmania guyanensis suppressed inducible nitric oxide synthase provoked by its viral endosymbiont.

    Get PDF
    Inducible nitric oxide synthase (iNOS) is essential to the production of nitric oxide (NO), an efficient effector molecule against intracellular human pathogens such as Leishmania protozoan parasites. Some strains of Leishmania are known to bear a viral endosymbiont termed Leishmania RNA virus 1 (LRV1). Recognition of LRV1 by the innate immune sensor Toll-like receptor-3 (TLR3) leads to conditions worsening the disease severity in mice. This process is governed by type I interferon (type I IFNs) arising downstream of TLR3 stimulation and favoring the formation of secondary metastatic lesions. The formation of these lesions is mediated by the inflammatory cytokine IL-17A and occurs in the absence, or low level of, protective cytokine IFN-γ. Here, we described that the presence of LRV1 led to the initial expression of iNOS and low production of NO that failed to control infection. We subsequently showed that LRV1-triggered type I IFN was essential but insufficient to induce robust iNOS induction, which requires strong activation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). Leishmania guyanensis carrying LRV1 (LgyLRV1+) parasites mitigated strong iNOS production by limiting NF-kB activation via the induction of tumor necrosis factor-alpha-induced protein 3 (TNFAIP3), also known as A20. Moreover, our data suggested that production of LRV1-induced iNOS could be correlated with parasite dissemination and metastasis via elevated secretion of IL-17A in the draining lymph nodes. Our findings support an additional strategy by which LRV1-bearing Leishmania guyanensis evaded killing by nitric oxide and suggest that low levels of LRV1-induced NO might contribute to parasite metastasis

    The antioxidant response favors Leishmania parasites survival, limits inflammation and reprograms the host cell metabolism.

    No full text
    The oxidative burst generated by the host immune system can restrict intracellular parasite entry and growth. While this burst leads to the induction of antioxidative enzymes, the molecular mechanisms and the consequences of this counter-response on the life of intracellular human parasites are largely unknown. The transcription factor NF-E2-related factor (NRF2) could be a key mediator of antioxidant signaling during infection due to the entry of parasites. Here, we showed that NRF2 was strongly upregulated in infection with the human Leishmania protozoan parasites, its activation was dependent on a NADPH oxidase 2 (NOX2) and SRC family of protein tyrosine kinases (SFKs) signaling pathway and it reprogrammed host cell metabolism. In inflammatory leishmaniasis caused by a viral endosymbiont inducing TNF-α in chronic leishmaniasis, NRF2 activation promoted parasite persistence but limited TNF-α production and tissue destruction. These data provided evidence of the dual role of NRF2 in protecting both the invading pathogen from reactive oxygen species and the host from an excess of the TNF-α destructive pro-inflammatory cytokine
    corecore