507 research outputs found

    Competing rhombohedral and monoclinic crystal structures in MnPn2Ch4Pn_2Ch_4 compounds: an {\em ab-initio} study

    Full text link
    Based on the relativistic spin-polarized density functional theory calculations we investigate the crystal structure, electronic and magnetic properties of a family MnPn2Ch4 compounds, where pnictogen metal atoms (Pn) are Sb and Bi; chalcogens (Ch) are Se, Te. We show that in the series the compounds of this family with heavier elements prefer to adopt rhombohedral crystal structure composed of weakly bonded septuple monoatomic layers while those with lighter elements tend to be in the monoclinic structure. Irrespective of the crystal structure all compounds of the MnPn2Ch4 series demonstrate a weak energy gain (of a few meV per formula unit or even smaller than meV) for antiferromagnetic (AFM) coupling for magnetic moments on Mn atoms with respect to their ferromagnetic (FM) state. For rhombohedral structures the interlayer AFM coupling is preferable while in monoclinic phases intralayer AFM configuration with ferromagnetic ordering along the Mn chain and antiferromagnetic ordering between the chains has a minimum energy. Over the series the monoclinic compounds are characterized by substantially wider bandgap than compounds with rhombohedral structure

    Spin Polarization and Transport of Surface States in the Topological Insulators Bi2Se3 and Bi2Te3 from First Principles

    Full text link
    We investigate the band dispersion and the spin texture of topologically protected surface states in the bulk topological insulators Bi2Se3 and Bi2Te3 by first-principles methods. Strong spin-orbit entanglement in these materials reduces the spin-polarization of the surface states to ~50% in both cases; this reduction is absent in simple models but of important implications to essentially any spintronic application. We propose a way of controlling the magnitude of spin polarization associated with a charge current in thin films of topological insulators by means of an external electric field. The proposed dual-gate device configuration provides new possibilities for electrical control of spin.Comment: 4+ pages, 3 figure

    Spin-helical Dirac states in graphene induced by polar-substrate surfaces with giant spin-orbit interaction: a new platform for spintronics

    Get PDF
    Spintronics, or spin electronics, is aimed at efficient control and manipulation of spin degrees of freedom in electron systems. To comply with demands of nowaday spintronics, the studies of electron systems hosting giant spin-orbit-split electron states have become one of the most important directions providing us with a basis for desirable spintronics devices. In construction of such devices, it is also tempting to involve graphene, which has attracted great attention because of its unique and remarkable electronic properties and was recognized as a viable replacement for silicon in electronics. In this case, a challenging goal is to make graphene Dirac states spin-polarized. Here, we report on absolutely new promising pathway to create spin-polarized Dirac states based on coupling of graphene and polar-substrate surface states with giant Rashba-type spin-splitting. We demonstrate how the spin-helical Dirac states are formed in graphene deposited on the surface of BiTeCl. This coupling induces spin separation of the originally spin-degenerate graphene states and results in fully helical in-plane spin polarization of the Dirac electrons.Comment: 5 pages, 3 figure

    Rashba split surface states in BiTeBr

    Get PDF
    Within density functional theory, we study bulk band structure and surface states of BiTeBr. We consider both ordered and disordered phases which differ in atomic order in the Te-Br sublattice. On the basis of relativistic ab-initio calculations, we show that the ordered BiTeBr is energetically preferable as compared with the disordered one. We demonstrate that both Te- and Br-terminated surfaces of the ordered BiTeBr hold surface states with a giant spin-orbit splitting. The Te-terminated surface-state spin splitting has the Rashba-type behavior with the coupling parameter \alpha_R ~ 2 eV\AA.Comment: 8 pages, 7 figure

    Many-body effects on the Rashba-type spin splitting in bulk bismuth tellurohalides

    Get PDF
    We report on many-body corrections to one-electron energy spectra of bulk bismuth tellurohalides---materials that exhibit a giant Rashba-type spin splitting of the band-gap edge states. We show that the corrections obtained in the one-shot GWGW approximation noticeably modify the spin-orbit-induced spin splitting evaluated within density functional theory. We demonstrate that taking into account many-body effects is crucial to interpret the available experimental data.Comment: 6 pages, 1 figur

    Experimental verification of PbBi2_{2}Te4_{4} as a 3D topological insulator

    Get PDF
    The first experimental evidence is presented of the topological insulator state in PbBi2_{2}Te4_{4}. A single surface Dirac cone is observed by angle-resolved photoemission spectroscopy (ARPES) with synchrotron radiation. Topological invariants Z2\mathbb{Z}_2 are calculated from the {\it ab initio} band structure to be 1; (111). The observed two-dimensional iso-energy contours in the bulk energy gap are found to be the largest among the known three-dimensional topological insulators. This opens a pathway to achieving a sufficiently large spin current density in future spintronic devices.Comment: 5 pages, 5 figures, accepted for publication in Phys. Rev. Let

    Non-Dirac topological surface states in (SnTe)n2_{n\geq2}(Bi2_2Te3_3)m=1_{m=1}

    Get PDF
    A new type of topological spin-helical surface states was discovered in layered van der Waals bonded (SnTe)n=2,3_{n=2,3}(Bi2_2Te3_3)m=1_{m=1} compounds which comprise two covalently bonded band inverted subsystems, SnTe and Bi2_2Te3_3, within a building block. This novel topological states demonstrate non-Dirac dispersion within the band gap. The dispersion of the surface state has two linear sections of different slope with shoulder feature between them. Such a dispersion of the topological surface state enables effective switch of the velocity of topological carriers by means of applying an external electric field
    corecore