390 research outputs found

    Environmentally Marginalized Populations: the perfect storm for infectious disease pandemics, including COVID-19

    Full text link
    COVID-19 has exacted a severe toll on the United States population’s physical and mental health and its effects have been felt most severely among people of color and low socioeconomic status. Using illustrative case studies, this commentary argues that in addition to COVID-19 health disparities created by psychosocial stressors such as the inability to socially distance and access quality healthcare, environmental justice communities have the additional burden of disproportionate exposure to toxic contaminants that contribute to their higher risk of COVID-19. Environmental contaminants including heavy metals and persistent organic pollutants found contaminating their nearby environments can alter the immune response, produce an inflammatory response, and induce systemic adverse health effects that, alongside social stressors, create the “perfect storm” in environmental justice communities for COVID-19

    Functional characterization of the ABCG2 5' non-coding exon variants: Stem cell specificity, translation efficiency and the influence of drug selection.

    Get PDF
    ABCG2 is a multidrug transporter with wide substrate specificity, and is believed to protect several cell types from various xenobiotics and endobiotics. This "guardian" function is important in numerous cell types and tissue barriers but becomes disadvantageous by being responsible for the multidrug resistance phenotype in certain tumor cells. ABCG2 regulation at the protein level has already been extensively studied, however, regulation at the mRNA level, especially the functional role of the various 5' untranslated exon variants (5' UTRs) has been elusive. In the present work, we describe a comprehensive characterization of four ABCG2 mRNA variants with different exon 1 sequences, investigate drug inducibility, stem cell specificity, mRNA stability, and translation efficiency. Although certain variants (E1B and E1C) are considered as "constitutive" mRNA isoforms, we show that chemotoxic drugs significantly alter the expression pattern of distinct ABCG2 mRNA isoforms. When examining human embryonic stem cell lines, we provide evidence that variant E1A has an expression pattern coupled to undifferentiated stem cell stage, as its transcript level is regulated parallel to mRNAs of Oct4 and Nanog pluripotency marker genes. When characterizing the four exon 1 variants we found no significant differences in terms of mRNA stabilities and half-lives of the isoforms. In contrast, variant E1U showed markedly lower translation efficiency both at the total protein level or regarding the functional presence in the plasma membrane. Taken together, these results indicate that the different 5' UTR variants play an important role in cell type specific regulation and fine tuning of ABCG2 expression

    Targeting vascular endothelial growth factor receptor 2 and protein kinase d1 related pathways by a multiple kinase inhibitor in angiogenesis and inflammation related processes in vitro.

    Get PDF
    Emerging evidence suggests that the vascular endothelial growth factor receptor 2 (VEGFR2) and protein kinase D1 (PKD1) signaling axis plays a critical role in normal and pathological angiogenesis and inflammation related processes. Despite all efforts, the currently available therapeutic interventions are limited. Prior studies have also proved that a multiple target inhibitor can be more efficient compared to a single target one. Therefore, development of novel inflammatory pathway-specific inhibitors would be of great value. To test this possibility, we screened our molecular library using recombinant kinase assays and identified the previously described compound VCC251801 with strong inhibitory effect on both VEGFR2 and PKD1. We further analyzed the effect of VCC251801 in the endothelium-derived EA.hy926 cell line and in different inflammatory cell types. In EA.hy926 cells, VCC251801 potently inhibited the intracellular activation and signaling of VEGFR2 and PKD1 which inhibition eventually resulted in diminished cell proliferation. In this model, our compound was also an efficient inhibitor of in vitro angiogenesis by interfering with endothelial cell migration and tube formation processes. Our results from functional assays in inflammatory cellular models such as neutrophils and mast cells suggested an anti-inflammatory effect of VCC251801. The neutrophil study showed that VCC251801 specifically blocked the immobilized immune-complex and the adhesion dependent TNF-alpha -fibrinogen stimulated neutrophil activation. Furthermore, similar results were found in mast cell degranulation assay where VCC251801 caused significant reduction of mast cell response. In summary, we described a novel function of a multiple kinase inhibitor which strongly inhibits the VEGFR2-PKD1 signaling and might be a novel inhibitor of pathological inflammatory pathways

    Distribution of sulfur in power supply lignite from North Hungary

    Get PDF
    Abstract The present article discusses the results of measurements carried out to assess the distribution of different sulfur types in lignite samples deriving from two opencast lignite mines near the villages of BĂŒkkĂĄbrĂĄny and Visonta. These mines ensure the continuous supply of fuel for one of Hungary's largest thermal power plant. According to our findings no significant differences could be identified between the samples of the two mines based on their total sulfur (St) content. Both lignite types were classified as coals with medium-sulfur content according to the system of Chou (1990). A majority of total sulfur is accumulated in lignite, while in the intercalated carbonaceous shale total sulfur is present in minor amounts. Usually the sequence of the distribution of sulfur among the different bond forms in lignite collected from opencast mine of Visonta is as follows: pyritic sulfur (Sp) > organic sulfur (Sorg) > sulfate sulfur (SSOorg4). In the samples collected from Visonta and BĂŒkkĂĄbrĂĄny quantities of total sulfur were similar. However, some difference in their distribution among various sulfur types were noted. Although half of the samples were weathered and the amount of pyrite sulfur must have been higher in the weathered lignite of BĂŒkkĂĄbrĂĄny preceding the oxidation process, the sequence of the distribution of sulfur was likely as follows Sorg ≄ Sp ≄ SSO4

    Anaphylatoxin C3a receptors in asthma

    Get PDF
    The complement system forms the central core of innate immunity but also mediates a variety of inflammatory responses. Anaphylatoxin C3a, which is generated as a byproduct of complement activation, has long been known to activate mast cells, basophils and eosinophils and to cause smooth muscle contraction. However, the role of C3a in the pathogenesis of allergic asthma remains unclear. In this review, we examine the role of C3a in promoting asthma. Following allergen challenge, C3a is generated in the lung of subjects with asthma but not healthy subjects. Furthermore, deficiency in C3a generation or in G protein coupled receptor for C3a abrogates allergen-induced responses in murine models of pulmonary inflammation and airway hyperresponsiveness. In addition, inhibition of complement activation or administration of small molecule inhibitors of C3a receptor after sensitization but before allergen challenge inhibits airway responses. At a cellular level, C3a stimulates robust mast cell degranulation that is greatly enhanced following cell-cell contact with airway smooth muscle (ASM) cells. Therefore, C3a likely plays an important role in asthma primarily by regulating mast cell-ASM cell interaction

    Levosimendan Administration in Limb Ischemia: Multicomponent Signaling Serving Kidney Protection

    Get PDF
    AIMS AND OBJECTIVES: Acute renal failure is a severe complication of lower extremity major arterial reconstructions, which could even be fatal. Levosimendan is a dual-acting positive inotropic and vasodilatory agent, which is suspected to have protective effects against cardiac ischemia. However, there is no data available on lower limb or remote organ ischemic injuries therefore the aim of the study was to investigate the effect of levosimendan on lower limb ischemia-reperfusion injury and the corollary renal dysfunction. METHODS: Male Wistar rats underwent 180 min bilateral lower limb ischemia followed by 4 or 24 hours of reperfusion. Intravenous Levosimendan was administered continuously (0.2mug/bwkg/min) throughout the whole course of ischemia and the first 3h of reperfusion. Results were compared with sham-operated and ischemia-reperfusion groups. Hemodynamic monitoring was performed by invasive arterial blood pressure measurement. Kidney and lower limb muscle microcirculation was registered by a laser Doppler flowmeter. After 4h and 24h of reperfusion, serum, urine and histological samples were collected. RESULTS: Systemic hemodynamic parameters and microcirculation of kidney and the lower limb significantly improved in the Levosimendan treated group. Muscle viability was significantly preserved 4 and 24 hours after reperfusion. At the same time, renal functional laboratory tests and kidney histology demonstrated significantly less expressive kidney injury in Levosimendan groups. TNF-alpha levels were significantly less elevated in the Levosimendan group 4 hours after reperfusion. CONCLUSION: The results claim a protective role for Levosimendan administration during major vascular surgeries to prevent renal complications

    Functional characterization of the complement receptor type 1 and its circulating ligands in patients with schizophrenia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Whereas the complement system alterations contribute to schizophrenia, complement receptors and regulators are little studied. We investigated complement receptor type 1 (CR1) expression on blood cells, the levels of circulating immune complexes (CIC) containing ligands of CR1, C1q complement protein and fragments of C3 complement protein (C1q-CIC, C3d-CIC), and CR1 C5507G functional polymorphism in schizophrenia patients and controls.</p> <p>Results</p> <p>We found an increased C1q-CIC level and CR1 expression on blood cells, elevated number of CR1 positive erythrocytes and reduced number of CR1 positive lymphocytes and monocytes in patients compared to controls. No difference in the levels of C3d-CIC between groups was observed. Higher CR1 expression on erythrocytes in CC genotype versus CG+GG for both groups was detected, whereas no difference was observed for other cell populations. Our results indicated that schizophrenia is associated with the increased CR1 expression and C1q-CIC level.</p> <p>Conclusions</p> <p>Our study for the first time indicated that schizophrenia is associated with the increased CR1 expression and C1q-CIC level. Further studies in other ethnic groups are needed to replicate these findings.</p

    Diet-Induced Obesity Impairs Endothelium-Derived Hyperpolarization via Altered Potassium Channel Signaling Mechanisms

    Get PDF
    BACKGROUND: The vascular endothelium plays a critical role in the control of blood flow. Altered endothelium-mediated vasodilator and vasoconstrictor mechanisms underlie key aspects of cardiovascular disease, including those in obesity. Whilst the mechanism of nitric oxide (NO)-mediated vasodilation has been extensively studied in obesity, little is known about the impact of obesity on vasodilation to the endothelium-derived hyperpolarization (EDH) mechanism; which predominates in smaller resistance vessels and is characterized in this study. METHODOLOGY/PRINCIPAL FINDINGS: Membrane potential, vessel diameter and luminal pressure were recorded in 4(th) order mesenteric arteries with pressure-induced myogenic tone, in control and diet-induced obese rats. Obesity, reflecting that of human dietary etiology, was induced with a cafeteria-style diet (∌30 kJ, fat) over 16-20 weeks. Age and sexed matched controls received standard chow (∌12 kJ, fat). Channel protein distribution, expression and vessel morphology were determined using immunohistochemistry, Western blotting and ultrastructural techniques. In control and obese rat vessels, acetylcholine-mediated EDH was abolished by small and intermediate conductance calcium-activated potassium channel (SK(Ca)/IK(Ca)) inhibition; with such activity being impaired in obesity. SK(Ca)-IK(Ca) activation with cyclohexyl-[2-(3,5-dimethyl-pyrazol-1-yl)-6-methyl-pyrimidin-4-yl]-amine (CyPPA) and 1-ethyl-2-benzimidazolinone (1-EBIO), respectively, hyperpolarized and relaxed vessels from control and obese rats. IK(Ca)-mediated EDH contribution was increased in obesity, and associated with altered IK(Ca) distribution and elevated expression. In contrast, the SK(Ca)-dependent-EDH component was reduced in obesity. Inward-rectifying potassium channel (K(ir)) and Na(+)/K(+)-ATPase inhibition by barium/ouabain, respectively, attenuated and abolished EDH in arteries from control and obese rats, respectively; reflecting differential K(ir) expression and distribution. Although changes in medial properties occurred, obesity had no effect on myoendothelial gap junction density. CONCLUSION/SIGNIFICANCE: In obese rats, vasodilation to EDH is impaired due to changes in the underlying potassium channel signaling mechanisms. Whilst myoendothelial gap junction density is unchanged in arteries of obese compared to control, increased IK(Ca) and Na(+)/K(+)-ATPase, and decreased K(ir) underlie changes in the EDH mechanism
    • 

    corecore