6,707 research outputs found

    Transport Mean Free Path for Magneto-Transverse Light Diffusion

    Full text link
    We derive an expression for the transport mean free path ℓ⊄∗\ell^*_\perp associated with magneto-transverse light diffusion for a random collection of Faraday-active Mie scatterers. This expression relates the magneto-transverse diffusion in multiple scattering directly to the magneto-transverse scattering of a single scatterer.Comment: 5 pages, 1 figure, Latex, accepted for publication in Europhysics Letter

    Protective copolymers for nonviral gene vectors: synthesis, vector characterization and application in gene delivery

    Get PDF
    Uncontrolled interactions of gene vectors and drug carriers in and with an in vivo environment pose serious limitations to their applicability. In order to reduce such interactions we have designed, synthesized and applied novel copolymers of poly(ethylene glycol) and reactive linkers which are derivatized with anionic peptides after copolymerization. The anionic copolymer derivatives are used to coat positively charged nonviral gene vectors by electrostatic interactions. The copolymer coat confers to polyelectrolyte colloids of DNA and polycations steric stabilization in their minimal size and prevents salt- and serum albumin-induced aggregation. Furthermore, complement activation and the interaction with serum proteins are drastically reduced or abolished in contrast to unprotected DNA complexes. The designed vectors are compatible with the intracellular steps of gene delivery and can even enhance transfection efficiency as demonstrated with various adherent and nonadherent cell lines in culture. The synthetic concept is amenable to the principles of combinatorial chemistry and the copolymeric products may be applicable beyond gene delivery in targeted drug delivery

    Systemic linear polyethylenimine (L‐PEI)‐mediated gene delivery in the mouse

    Get PDF
    Background Several nonviral vectors including linear polyethylenimine(L‐PEI) confer a pronounced lung tropism to plasmid DNA when injected into the mouse tail vein in a nonionic solution. Methods and results We have optimized this route by injecting 50 ”g DNA with excess L‐PEI (PEI nitrogen/DNA phosphate=10) in a large volume of 5% glucose (0.4 ml). In these conditions, 1–5% of lung cells were transfected (corresponding to 2 ng luciferase/mg protein), the other organs remaining essentially refractory to transfection (1–10 pg luciferase/mg protein).ÎČ‐Galactosidase histochemistry confirmed alveolar cells, including pneumocytes, to be the main target, thus leading to the puzzling observation that the lung microvasculature must be permeable to cationic L‐PEI/DNA particles of ca 60 nm. A smaller injected volume, premixing of the complexes with autologous mouse serum, as well as removal of excess free L‐PEI, all severely decreased transgene expression in the lung. Arterial or portal vein delivery did not increase transgene expression in other organs. Conclusions These observations suggest that effective lung transfection primarily depends on the injection conditions: the large nonionic glucose bolus prevents aggregation as well as mixing of the cationic complexes and excess free L‐PEI with blood. This may favour vascular leakage in the region where the vasculature is dense and fragile, i.e. around the lung alveoli. Cationic particles can thus reach the epithelium from the basolateral side where their receptors (heparan sulphate proteoglycans) are abundant

    The antimicrobial polymer PHMB enters cells and selectively condenses bacterial chromosomes

    Get PDF
    To combat infection and antimicrobial resistance, it is helpful to elucidate drug mechanism(s) of action. Here we examined how the widely used antimicrobial polyhexamethylene biguanide (PHMB) kills bacteria selectively over host cells. Contrary to the accepted model of microbial membrane disruption by PHMB, we observed cell entry into a range of bacterial species, and treated bacteria displayed cell division arrest and chromosome condensation, suggesting DNA binding as an alternative antimicrobial mechanism. A DNA-level mechanism was confirmed by observations that PHMB formed nanoparticles when mixed with isolated bacterial chromosomal DNA and its effects on growth were suppressed by pairwise combination with the DNA binding ligand Hoechst 33258. PHMB also entered mammalian cells, but was trapped within endosomes and excluded from nuclei. Therefore, PHMB displays differential access to bacterial and mammalian cellular DNA and selectively binds and condenses bacterial chromosomes. Because acquired resistance to PHMB has not been reported, selective chromosome condensation provides an unanticipated paradigm for antimicrobial action that may not succumb to resistance

    Effective polyethylenimine-mediated gene transfer into human endothelial cells

    Get PDF
    Background The major advantage in choosing non‐viral vectors such as cationic polymers for in vitro and in vivo transfection is their higher biosafety than viral ones. Among the cationic polymers, polyethylenimines (PEIs) are promising molecules for gene delivery to a variety of cells. Efficient transfection of primary endothelial cells using PEIs could be regarded as an interesting strategy of treatment in some ischemic cardiovascular diseases. Methods Efficacies of a 22‐kDa linear PEI (L‐PEI) and its glucose‐grafted derivative (L‐PEI‐Glc4) were compared for gene transfer into human umbilical vein endothelial cells (HUVEC) using the reporter gene luciferase. Cells were incubated for 2, 4 and 24 h with PEI/DNA complexes made in 150 mM sodium chloride (NaCl) or in 5% glucose solution. Luciferase activity was measured 24 h after the onset of transfection. The effects of low (2%) and high (30%) concentrations of serum on transfection efficacy were assessed as well. We then studied the intracellular fate of the PEI/DNA complexes labelled with the DNA intercalator YOYO‐1 using flow cytometry analysis (FACS) and confocal microscopy. Results PEI/DNA complexes formed in NaCl led to a higher transfection efficacy than those made in glucose. The optimal formulation, depending on the incubation time and the presence of serum in the medium, was obtained using DNA complexed to L‐PEI‐Glc4 and incubated for 4 h with the cells. This condition led to 50% fluorescent cells after GFP transfection. A high serum concentration diminished the L‐PEI associated toxicity but decreased L‐PEI‐Glc4 transfection efficiency. FACS analysis using both vectors showed that almost 90% of the cells had internalized the DNA complexes. Confocal microscopic observations showed a fast attachment of the complexes to the cell surface followed by inclusion into vesicles that migrated to the perinuclear region. Conclusions In this work, we defined the optimal conditions for gene delivery in HUVEC. These conditions were obtained when using derivatives L‐PEI and L‐PEI‐Glc4 complexed with DNA in 150 mM NaCl and added to cells for 2 and 4 h, respectively. Cellular trafficking of the complexes suggested that cell entry was not a limiting factor for gene delivery using PEI. This study underlined the interest in PEIs as efficient vectors for gene transfer into human endothelial cells

    Genuine DNA/polyethylenimine (PEI) Complexes Improve Transfection Properties and Cell Survival

    Get PDF
    Polyethylenimine (PEI) has been described as one of the most efficient cationic polymers for in vitro gene delivery. Systemic delivery of PEI/DNA polyplexes leads to a lung-expression tropism. Selective in vivo gene transfer would require targeting and stealth particles. Here, we describe two strategies for chemically coupling polyethylene glycol (PEG) to PEI, to form protected ligand-bearing particles. Pre-grafted PEG–PEI polymers lost their DNA condensing property, hence their poor performances. Coupling PEG to pre-formed PEI/DNA particles led to the expected physical properties. However, low transfection efficacies raised the question of the fate of excess free polymer in solution. We have developed a straightforward a purification assay, which uses centrifugation-based ultrafiltration. Crude polyplexes were purified, with up to 60% of the initial PEI dose being removed. The resulting purified and unshielded PEI/DNA polyplexes are more efficient for transfection and less toxic to cells in culture than the crude ones. Moreover, the in vivo toxicity of the polyplexes was greatly reduced, without affecting their efficacy
    • 

    corecore