14 research outputs found

    Reorientation-effect measurement of the first 2+ state in 12C : Confirmation of oblate deformation

    Get PDF
    A Coulomb-excitation reorientation-effect measurement using the TIGRESS γ−ray spectrometer at the TRIUMF/ISAC II facility has permitted the determination of the 〈21 +‖E2ˆ‖21 +〉 diagonal matrix element in 12C from particle−γ coincidence data and state-of-the-art no-core shell model calculations of the nuclear polarizability. The nuclear polarizability for the ground and first-excited (21 +) states in 12C have been calculated using chiral NN N4LO500 and NN+3NF350 interactions, which show convergence and agreement with photo-absorption cross-section data. Predictions show a change in the nuclear polarizability with a substantial increase between the ground state and first excited 21 + state at 4.439 MeV. The polarizability of the 21 + state is introduced into the current and previous Coulomb-excitation reorientation-effect analyses of 12C. Spectroscopic quadrupole moments of QS(21 +)=+0.053(44) eb and QS(21 +)=+0.08(3) eb are determined, respectively, yielding a weighted average of QS(21 +)=+0.071(25) eb, in agreement with recent ab initio calculations. The present measurement confirms that the 21 + state of 12C is oblate and emphasizes the important role played by the nuclear polarizability in Coulomb-excitation studies of light nuclei

    The etiology of rhabdomyolysis: an interaction between genetic susceptibility and external triggers

    No full text
    Contains fulltext : 231548.pdf (Publisher’s version ) (Open Access)BACKGROUND AND PURPOSE: Rhabdomyolysis is a medical emergency characterized by acute skeletal muscle breakdown with a sudden rise and subsequent fall of serum creatine kinase (CK) levels. Rhabdomyolysis events are provoked by exposure to external triggers, possibly in combination with an increased genetic susceptibility. We aimed to describe comprehensively the external triggers and potentially pathogenic genetic variants possibly implicated in increased rhabdomyolysis susceptibility. METHODS: We performed a retrospective single-center study, including a total of 1302 patients with an acute CK level exceeding 2000 IU/l. RESULTS: Anoxia was the most frequently reported trigger (40%). A subset of 193 patients were clinically suspected of an underlying genetic disorder (recurrent episodes, a positive family history, very high or persistently increased CK levels). In 72 of these patients, an unequivocal genetic defect was identified. A total of 22 genes with pathogenic variants were identified, including 52 different variants. Of those, 11 genes have been previously associated with rhabdomyolysis (ACADVL, ANO5, CPT2, DMD, DYSF, FKRP, HADHA, PGM1, LPIN1, PYGM, RYR1). Eleven genes are probably implicated in increased susceptibility (including AGL, CAPN3, CNBP, DMPK, MAGT1, ACADM, SCN4A, SGCA, SGCG, SMPD1, TANGO2). CONCLUSION: These findings suggest that the spectrum of genetic susceptibility for rhabdomyolysis has not yet been completely clarified. With the increasing availability of next-generation sequencing in a diagnostic setting, we expect that in more cases a genetic defect will be identified
    corecore