37 research outputs found

    A Case of Pfeiffer Syndrome

    Get PDF
    Pfeiffer Syndrome is as rare as Apert syndrome in the Western population. This condition is very rare in the Asian population and has not been previously reported in Korea. The authors report with a review of literature the case of a newborn baby with Pfeiffer syndrome, manifested by bicoronal craniosynostosis, broad thumbs, and big toes. The infant also had bilateral syndactyly of the fingers and toes, mild proptosis, choanal hypoplasia and maxillary hypoplasia

    Limited Effect of CpG ODN in Preventing Type 1 Diabetes in NOD Mice

    Get PDF
    Type 1 diabetes is considered as Th1 cell mediated autoimmune disease and the suppression of Th1 cells or the activation of Th2 cells has been regarded as a plausible immunologic intervention for the prevention of type 1 diabetogenesis in a rodent model. CpG ODN is an immunostimulatory sequence primarily present in bacterial DNA, viral DNA and BCG. CpG ODN is conventionally classified as a Th1 cell activator, which has been clinically applied to cancer, allergy and infectious disease. Recently, there was a promising report of that CpG ODN administration suppressed the development of type 1 diabetes in NOD mice by inducing Th2 cell mediated cytokine. However, the antidiabetogenic effect of CpG ODN on NOD mice is controversial. Thus, two studies were serially undertaken with various kinds of CpG motif to find a more optimal sequence and administration method. In the first study, CpG ODN was vaccinated four times and pancreatic inflammation and the quantity of serum insulin subsequently evaluated. In the second study, the amounts of IFN γ and IL-4 in sera were measured as representative cytokines of Th1 and Th2 cells, respectively. As a result, vaccination or continuous injection of CpG ODN failed to show a preventive effect on type 1 diabetogenesis in NOD mice. Structural differences of CpG ODN also had no affect on the result. CpG ODN also consistently showed affect on the pancreatic pathology. The productions of IFN and IL-4 were γ detected only in the K and D type CpG ODN administration groups. Comparison of the two cytokines leads to the conclusion that CpG ODN generated a Th1-weighted response in both study groups. It was assumed that CpG ODN failed to produce Th2-weighted cytokine milieu, which can overcome the genetically determined phenotype of NOD mice. Given these results, it was concluded that the immunotherapeutic application of CpG ODN on Type 1 diabetes had clear limitations

    Methylsulfonylmethane Suppresses Breast Cancer Growth by Down-Regulating STAT3 and STAT5b Pathways

    Get PDF
    Breast cancer is the most aggressive form of all cancers, with high incidence and mortality rates. The purpose of the present study was to investigate the molecular mechanism by which methylsulfonylmethane (MSM) inhibits breast cancer growth in mice xenografts. MSM is an organic sulfur-containing natural compound without any toxicity. In this study, we demonstrated that MSM substantially decreased the viability of human breast cancer cells in a dose-dependent manner. MSM also suppressed the phosphorylation of STAT3, STAT5b, expression of IGF-1R, HIF-1α, VEGF, BrK, and p-IGF-1R and inhibited triple-negative receptor expression in receptor-positive cell lines. Moreover, MSM decreased the DNA-binding activities of STAT5b and STAT3, to the target gene promoters in MDA-MB 231 or co-transfected COS-7 cells. We confirmed that MSM significantly decreased the relative luciferase activities indicating crosstalk between STAT5b/IGF-1R, STAT5b/HSP90α, and STAT3/VEGF. To confirm these findings in vivo, xenografts were established in Balb/c athymic nude mice with MDA-MB 231 cells and MSM was administered for 30 days. Concurring to our in vitro analysis, these xenografts showed decreased expression of STAT3, STAT5b, IGF-1R and VEGF. Through in vitro and in vivo analysis, we confirmed that MSM can effectively regulate multiple targets including STAT3/VEGF and STAT5b/IGF-1R. These are the major molecules involved in tumor development, progression, and metastasis. Thus, we strongly recommend the use of MSM as a trial drug for treating all types of breast cancers including triple-negative cancers

    Hemorrhagic cholecystitis presenting as obstructive jaundice

    No full text

    Triptycene-based quinone molecules showing multi-electron redox reactions for large capacity and high energy organic cathode materials in Li-ion batteries

    No full text
    Organic redox-active molecules have attracted great attention for next generation electrode materials due to their promising advantages of low cost, natural abundance, environmental friendliness, and structural diversity. Here we propose a new molecular design strategy to achieve both large specific capacity and high energy organic cathode materials for Li-ion batteries using a triptycene scaffold as a minimal linker between the redox-active units. The triptycene molecule bearing three benzoquinone (BQ) units in a rigid tripod structure exhibits five-electron redox reactions that practically provide a specific capacity as high as 387 mA h g−1 in Li-ion coin cells. By combining electrochemical analyses with theoretical DFT calculations, we figure out that the 3-D arrangements of BQ units in triptycene not only facilitate a highly reversible access to a large number of redox states but also raise the redox potential. Due to the large capacity and the increased redox potential, the triptycene electrode can deliver a specific energy up to 1032 W h kg−1 at 0.1C-rate, which is close to two times the specific energy of the conventional inorganic cathode materials. It is also demonstrated that the cycling performance of triptycenes can be greatly improved by fabricating nanocomposite materials with the ordered mesoporous carbon CMK3.11Nsciescopu
    corecore