58 research outputs found
METHODS FOR OBTAINING. HOLLOW NANO-STRUCTURES
Methods are provided for obtaining hollow nano-structures
which include the steps of providing a Suspended film starting
layer on a Support Substrate, depositing on the starting layer a
sacrificial layer, performing, in progressive sequence, a com
plete erosion phase of said Support Substrate and starting layer
and performing an at least partial erosion phase of the sacri
ficial layer previously deposited on the starting layer so as to
obtain holes passing through the starting layer and passing or
non passing through the sacrificial layer, depositing, on the
side of the support substrate opposite to that where the start
ing layer is put, at least one covering layer arranged to inter
nally cover the holes created by the progressive erosion. Hol
low nano-structures formed by Such methods are also
provided
A microfluidic device that separates cells
è un dispositivo e metodo che attraverso un sistema microfuidico munito di membrana separa le cellule in funzione delle loro dimension
Information in a network of neuronal cells: Effect of cell density and short-term depression
Neurons are specialized, electrically excitable cells which use electrical to chemical signals to transmit and elaborate information. Understanding how the cooperation of a great many of neurons in a grid may modify and perhaps improve the information quality, in contrast to few neurons in isolation, is critical for the rational design of cell-materials interfaces for applications in regenerative medicine, tissue engineering, and personalized lab-on-a-chips. In the present paper, we couple an integrate-and-fire model with information theory variables to analyse the extent of information in a network of nerve cells. We provide an estimate of the information in the network in bits as a function of cell density and short-term depression time. In the model, neurons are connected through a Delaunay triangulation of not-intersecting edges; in doing so, the number of connecting synapses per neuron is approximately constant to reproduce the early time of network development in planar neural cell cultures. In simulations where the number of nodes is varied, we observe an optimal value of cell density for which information in the grid is maximized. In simulations in which the posttransmission latency time is varied, we observe that information increases as the latency time decreases and, for specific configurations of the grid, it is largely enhanced in a resonance effect
Nano-topography Enhances Communication in Neural Cells Networks
Abstract Neural cells are the smallest building blocks of the central and peripheral nervous systems. Information in neural networks and cell-substrate interactions have been heretofore studied separately. Understanding whether surface nano-topography can direct nerve cells assembly into computational efficient networks may provide new tools and criteria for tissue engineering and regenerative medicine. In this work, we used information theory approaches and functional multi calcium imaging (fMCI) techniques to examine how information flows in neural networks cultured on surfaces with controlled topography. We found that substrate roughness S a affects networks topology. In the low nano-meter range, S a  = 0–30 nm, information increases with S a . Moreover, we found that energy density of a network of cells correlates to the topology of that network. This reinforces the view that information, energy and surface nano-topography are tightly inter-connected and should not be neglected when studying cell-cell interaction in neural tissue repair and regeneration
The structure of DNA by direct imaging
The structure of DNA was determined in 1953 by x-ray fiber diffraction. Several attempts have been made to obtain a direct image of DNA with alternative techniques. The direct image is intended to allow a quantitative evaluation of all relevant characteristic lengths present in a molecule. A direct image of DNA, which is different from diffraction in the reciprocal space, is difficult to obtain for two main reasons: the intrinsic very low contrast of the elements that form the molecule and the difficulty of preparing the sample while preserving its pristine shape and size. We show that through a preparation procedure compatible with the DNA physiological conditions, a direct image of a single suspended DNA molecule can be obtained. In the image, all relevant lengths of A-form DNA are measurable. A high-resolution transmission electron microscope that operates at 80 keV with an ultimate resolution of 1.5 Ă… was used for this experiment. Direct imaging of a single molecule can be used as a method to address biological problems that require knowledge at the single-molecule level, given that the average information obtained by x-ray diffraction of crystals or fibers is not sufficient for detailed structure determination, or when crystals cannot be obtained from biological molecules or are not sufficient in understanding multiple protein configurations
Potential therapeutic targets for ALS: MIR206, MIR208b and MIR499 are modulated during disease progression in the skeletal muscle of patients
Amyotrophic lateral sclerosis (ALS) is characterized by the progressive loss of motor neurons followed by muscle weakness, paralysis and death. The disease progression is extremely variable among patients, and reliable prognostic markers have not been identified. The aim of the study was to functionally characterize selected genes and microRNAs acting in the skeletal muscle of ALS patients, taking into account the duration and evolution of the disease, in order to obtain information regarding the muscle response to ALS progression. This prospective, longitudinal study enrolled 14 ALS patients and 24 age- A nd sex-matched healthy controls. Gene expression and histological analysis indicated an increase of MIR208B and MIR499 levels and the predominance of slow fibres, respectively, in the muscles of patients with a slower disease progression. A decreased expression of MIR206 and increased levels of HDAC4, during the progression of the disease were also observed. Taken together, our data suggest that the molecular signalling that regulates re-innervation and muscle regeneration is hampered during the progression of skeletal muscle impairment in ALS. This could provide precious hints towards defining prognostic protocols, and designing novel tailored therapeutic approaches, to improve ALS patients' care and delay disease progression
Malignant mesothelioma due to non-occupational asbestos exposure from the Italian national surveillance system (ReNaM): epidemiology and public health issues
Italy produced and imported a large amount of raw asbestos, up to the ban in 1992, with a peak in the period between 1976 and 1980 at about 160\u2005000 tons/year. The National Register of Mesotheliomas (ReNaM, "Registro Nazionale dei Mesoteliomi" in Italian), a surveillance system of mesothelioma incidence, has been active since 2002, operating through a regional structure
Epidemiological patterns of asbestos exposure and spatial clusters of incident cases of malignant mesothelioma from the Italian national registry.
BACKGROUND:
Previous ecological spatial studies of malignant mesothelioma cases, mostly based on mortality data, lack reliable data on individual exposure to asbestos, thus failing to assess the contribution of different occupational and environmental sources in the determination of risk excess in specific areas. This study aims to identify territorial clusters of malignant mesothelioma through a Bayesian spatial analysis and to characterize them by the integrated use of asbestos exposure information retrieved from the Italian national mesothelioma registry (ReNaM).
METHODS:
In the period 1993 to 2008, 15,322 incident cases of all-site malignant mesothelioma were recorded and 11,852 occupational, residential and familial histories were obtained by individual interviews. Observed cases were assigned to the municipality of residence at the time of diagnosis and compared to those expected based on the age-specific rates of the respective geographical area. A spatial cluster analysis was performed for each area applying a Bayesian hierarchical model. Information about modalities and economic sectors of asbestos exposure was analyzed for each cluster.
RESULTS:
Thirty-two clusters of malignant mesothelioma were identified and characterized using the exposure data. Asbestos cement manufacturing industries and shipbuilding and repair facilities represented the main sources of asbestos exposure, but a major contribution to asbestos exposure was also provided by sectors with no direct use of asbestos, such as non-asbestos textile industries, metal engineering and construction. A high proportion of cases with environmental exposure was found in clusters where asbestos cement plants were located or a natural source of asbestos (or asbestos-like) fibers was identifiable. Differences in type and sources of exposure can also explain the varying percentage of cases occurring in women among clusters.
CONCLUSIONS:
Our study demonstrates shared exposure patterns in territorial clusters of malignant mesothelioma due to single or multiple industrial sources, with major implications for public health policies, health surveillance, compensation procedures and site remediation programs
Role of continuous glucose monitoring in diabetic patients at high cardiovascular risk. an expert-based multidisciplinary delphi consensus
Background: Continuous glucose monitoring (CGM) shows in more detail the glycaemic pattern of diabetic subjects and provides several new parameters (“glucometrics”) to assess patients’ glycaemia and consensually guide treatment. A better control of glucose levels might result in improvement of clinical outcome and reduce disease complications. This study aimed to gather an expert consensus on the clinical and prognostic use of CGM in diabetic patients at high cardiovascular risk or with heart disease. Methods: A list of 22 statements concerning type of patients who can benefit from CGM, prognostic impact of CGM in diabetic patients with heart disease, CGM use during acute cardiovascular events and educational issues of CGM were developed. Using a two-round Delphi methodology, the survey was distributed online to 42 Italian experts (21 diabetologists and 21 cardiologists) who rated their level of agreement with each statement on a 5-point Likert scale. Consensus was predefined as more than 66% of the panel agreeing/disagreeing with any given statement. Results: Forty experts (95%) answered the survey. Every statement achieved a positive consensus. In particular, the panel expressed the feeling that CGM can be prognostically relevant for every diabetic patient (70%) and that is clinically useful also in the management of those with type 2 diabetes not treated with insulin (87.5%). The assessment of time in range (TIR), glycaemic variability (GV) and hypoglycaemic/hyperglycaemic episodes were considered relevant in the management of diabetic patients with heart disease (92.5% for TIR, 95% for GV, 97.5% for time spent in hypoglycaemia) and can improve the prognosis of those with ischaemic heart disease (100% for hypoglycaemia, 90% for hyperglycaemia) or with heart failure (87.5% for hypoglycaemia, 85% for TIR, 87.5% for GV). The experts retained that CGM can be used and can impact the short- and long-term prognosis during an acute cardiovascular event. Lastly, CGM has a recognized educational role for diabetic subjects. Conclusions: According to this Delphi consensus, the clinical and prognostic use of CGM in diabetic patients at high cardiovascular risk is promising and deserves dedicated studies to confirm the experts’ feeling
Epidemiological patterns of asbestos exposure and spatial clusters of incident cases of malignant mesothelioma from the Italian national registry
Abstract
BACKGROUND:
Previous ecological spatial studies of malignant mesothelioma cases, mostly based on mortality data, lack reliable data on individual exposure to asbestos, thus failing to assess the contribution of different occupational and environmental sources in the determination of risk excess in specific areas. This study aims to identify territorial clusters of malignant mesothelioma through a Bayesian spatial analysis and to characterize them by the integrated use of asbestos exposure information retrieved from the Italian national mesothelioma registry (ReNaM).
METHODS:
In the period 1993 to 2008, 15,322 incident cases of all-site malignant mesothelioma were recorded and 11,852 occupational, residential and familial histories were obtained by individual interviews. Observed cases were assigned to the municipality of residence at the time of diagnosis and compared to those expected based on the age-specific rates of the respective geographical area. A spatial cluster analysis was performed for each area applying a Bayesian hierarchical model. Information about modalities and economic sectors of asbestos exposure was analyzed for each cluster.
RESULTS:
Thirty-two clusters of malignant mesothelioma were identified and characterized using the exposure data. Asbestos cement manufacturing industries and shipbuilding and repair facilities represented the main sources of asbestos exposure, but a major contribution to asbestos exposure was also provided by sectors with no direct use of asbestos, such as non-asbestos textile industries, metal engineering and construction. A high proportion of cases with environmental exposure was found in clusters where asbestos cement plants were located or a natural source of asbestos (or asbestos-like) fibers was identifiable. Differences in type and sources of exposure can also explain the varying percentage of cases occurring in women among clusters.
CONCLUSIONS:
Our study demonstrates shared exposure patterns in territorial clusters of malignant mesothelioma due to single or multiple industrial sources, with major implications for public health policies, health surveillance, compensation procedures and site remediation programs
- …