148 research outputs found

    Single hole transistor in a p-Si/SiGe quantum well

    Full text link
    A single hole transistor is patterned in a p-Si/SiGe quantum well by applying voltages to nanostructured top gate electrodes. Gating is achieved by oxidizing the etched semiconductor surface and the mesa walls before evaporation of the top gates. Pronounced Coulomb blockade effects are observed at small coupling of the transistor island to source and drain.Comment: 3 pages, 3 figure

    Optimized stray-field-induced enhancement of the electron spin precession by buried Fe gates

    Full text link
    The magnetic stray field from Fe gates is used to modify the spin precession frequency of InGaAs/GaAs quantum-well electrons in an external magnetic field. By using an etching process to position the gates directly in the plane of the quantum well, the stray-field influence on the spin precession increases significantly compared with results from previous studies with top-gated structures. In line with numerical simulations, the stray-field-induced precession frequency increases as the gap between the ferromagnetic gates is reduced. The inhomogeneous stray field leads to additional spin dephasing.Comment: 4 pages, 2 figure

    Single-Electron Effects in a Coupled Dot-Ring System

    Full text link
    Aharonov-Bohm oscillations are studied in the magnetoconductance of a micron-sized open quantum ring coupled capacitively to a Coulomb-blockaded quantum dot. As the plunger gate of the dot is modulated and tuned through a conductance resonance, the amplitude of the Aharonov-Bohm oscillations in the transconductance of the ring displays a minimum. We demonstrate that the effect is due to a single-electron screening effect, rather than to dephasing. Aharonov-Bohm oscillations in a quantum ring can thus be used for the detection of single charges.Comment: 5 pages, 3 figure

    Nonthermal Emission from Accreting and Merging Clusters of Galaxies

    Get PDF
    We compare the nonthermal emission from clusters of galaxies undergoing minor mergers (``accreting'' clusters) and major mergers (``merging'' clusters). For accreting clusters, the radial distribution of the nonthermal emission in the clusters is also calculated. The relativistic electrons, which are the origin of the nonthermal radiation through inverse Compton (IC) and synchrotron mission, are assumed to be accelerated at shocks produced by accretion or mergers. We estimate the typical accretion rate and merger probability according to a hierarchical clustering model. We show that the total luminosity of IC emission from accreting and merging clusters are similar. On the other hand, the luminosity of synchrotron radio emission of the former is much smaller than that of the latter. We show that about 10% of clusters at z~0 should have hard X-ray and radio nonthermal emissions due to their last major merger, which are comparable to or dominate those due to ongoing accretion. Moreover, 20-40% of clusters should have significant EUV emission due to their last merger. We also investigate the case where the criterion of mergers is relaxed. If we extend the definition of a merger to an increase in the mass of the larger subcluster by at least 10% of its initial mass, about 20-30% of clusters at z~0 should have hard X-ray and radio nonthermal emissions due to the merger even in a low density universe. We compare the results with observations. We find that the observed EUV emission from clusters is not attributed to accretion. If the diffuse radio emission observed in clusters is synchrotron emission from electrons accelerated via accretion or merging, the magnetic fields of clusters are generally as small as ~0.1 mu G.Comment: 33 pages, 18 figures, accepted by Ap

    Fano effect in a ring-dot system with tunable coupling

    Full text link
    Transport measurements are presented on a quantum ring that is tunnel-coupled to a quantum dot. When the dot is in the Coulomb blockade regime, but strongly coupled to the open ring, Fano line shapes are observed in the current through the ring, when the electron number in the dot changes by one. The symmetry of the Fano resonances is found to depend on the magnetic flux penetrating the area of the ring and on the strength of the ring-dot coupling. At temperatures above T=0.65 K the Fano effect disappears while the Aharonov-Bohm interference in the ring persists up to T=4.2 K. Good agreement is found between these experimental observations and a single channel scattering matrix model including decoherence in the dot.Comment: 9 pages, 6 figure
    corecore