155 research outputs found

    Integració dels diferents projectes de 4t d’eso en un projecte complet

    Get PDF
    El títol escollit Integració dels diferents projectes de 4t d’ESO en un projecte complet ve per la necessitat que veig de modificar els diferents projectes que realitzen al llarg del curs els alumes de 4t d’ESO. Com veiem, cada any aquests realitzen els diferents projectes tal i com van realitzant les unitats didàctiques i en quan acaben alguns no hi saben per a què han muntat l’habitatge, per què serveixen les diferents bombetes, el control d’un motor, etc. Per tant, amb aquest treball de fi de màster el què vull crear, és la metodologia i seguiment per a què aquest alumnat arribi a saber que és el que ha muntat i per a què a més de poder continuar dissenyant diferents idees sobre el mateix gràcies a la pròpia autonomia que tindrà des de el començament del projecte. Per tot això començarem plantejant el procés tecnològic vist durant tota l’etapa de l’ESO en tecnologia i a partir d’aquest, l’alumnat serà el protagonista del que vol aconseguir per a final de curs, modificant al cap de cada avaluació aquest procés si és necessari. Una vegada arribem a fi de curs els nostres alumnes tindran dissenyada una llar del tipus que ells vulguin, amb els seus plànols, instal·lacions elèctriques, automàtiques, pneumàtiques, etc. Serà únic, probablement irrepetible i serà el que els donarà una motivació extra per exprimir el seu potencial i construir el seu propi habitatge

    An approach to geometric optimisation of railway catenaries

    Full text link
    [EN] The quality of current collection becomes a limiting factor when the aim is to increase the speed of the present railway systems. In this work an attempt is made to improve current collection quality optimising catenary geometry by means of a genetic algorithm (GA). As contact wire height and dropper spacing are thought to be highly influential parameters, they are chosen as the optimisation variables. The results obtained show that a GA can be used to optimise catenary geometry to improve current collection quality measured in terms of the standard deviation of the contact force. Furthermore, it is highlighted that apart from the usual pre-sag, other geometric parameters should also be taken into account when designing railway catenaries.The authors would like to acknowledge the financial support received from the FPU program offered by the Ministerio de Educación, Cultura y Deporte (MECD), under grant number [FPU13/04191], and also the funding provided by the Generalitat Valenciana [PROMETEO/2016/007].Gregori Verdú, S.; Tur Valiente, M.; Nadal, E.; Fuenmayor Fernández, F. (2017). An approach to geometric optimisation of railway catenaries. Vehicle System Dynamics. 1-25. https://doi.org/10.1080/00423114.2017.1407434S125Nåvik, P., Rønnquist, A., & Stichel, S. (2015). The use of dynamic response to evaluate and improve the optimization of existing soft railway catenary systems for higher speeds. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 230(4), 1388-1396. doi:10.1177/0954409715605140Harèll, P., Drugge, L., & Reijm, M. (2005). Study of Critical Sections in Catenary Systems During Multiple Pantograph Operation. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 219(4), 203-211. doi:10.1243/095440905x8934Bruni, S., Ambrosio, J., Carnicero, A., Cho, Y. H., Finner, L., Ikeda, M., … Zhang, W. (2014). The results of the pantograph–catenary interaction benchmark. Vehicle System Dynamics, 53(3), 412-435. doi:10.1080/00423114.2014.953183Shabana, A. A. (1998). Nonlinear Dynamics, 16(3), 293-306. doi:10.1023/a:1008072517368Zhou, N., & Zhang, W. (2011). Investigation on dynamic performance and parameter optimization design of pantograph and catenary system. Finite Elements in Analysis and Design, 47(3), 288-295. doi:10.1016/j.finel.2010.10.008Kim, J.-W., & Yu, S.-N. (2013). Design variable optimization for pantograph system of high-speed train using robust design technique. International Journal of Precision Engineering and Manufacturing, 14(2), 267-273. doi:10.1007/s12541-013-0037-7Ambrósio, J., Pombo, J., & Pereira, M. (2013). Optimization of high-speed railway pantographs for improving pantograph-catenary contact. Theoretical and Applied Mechanics Letters, 3(1), 013006. doi:10.1063/2.1301306Lee, J.-H., Kim, Y.-G., Paik, J.-S., & Park, T.-W. (2012). Performance evaluation and design optimization using differential evolutionary algorithm of the pantograph for the high-speed train. Journal of Mechanical Science and Technology, 26(10), 3253-3260. doi:10.1007/s12206-012-0833-5Massat, J.-P., Laurent, C., Bianchi, J.-P., & Balmès, E. (2014). Pantograph catenary dynamic optimisation based on advanced multibody and finite element co-simulation tools. Vehicle System Dynamics, 52(sup1), 338-354. doi:10.1080/00423114.2014.898780Cho, Y. H., Lee, K., Park, Y., Kang, B., & Kim, K. (2010). Influence of contact wire pre-sag on the dynamics of pantograph–railway catenary. International Journal of Mechanical Sciences, 52(11), 1471-1490. doi:10.1016/j.ijmecsci.2010.04.002Zhang, W., Mei, G., & Zeng, J. (2002). A Study of Pantograph/Catenary System Dynamics with Influence of Presag and Irregularity of Contact Wire. Vehicle System Dynamics, 37(sup1), 593-604. doi:10.1080/00423114.2002.11666265Koziel, S., & Yang, X.-S. (Eds.). (2011). Computational Optimization, Methods and Algorithms. Studies in Computational Intelligence. doi:10.1007/978-3-642-20859-1Hare, W., Nutini, J., & Tesfamariam, S. (2013). A survey of non-gradient optimization methods in structural engineering. Advances in Engineering Software, 59, 19-28. doi:10.1016/j.advengsoft.2013.03.001Tur, M., Baeza, L., Fuenmayor, F. J., & García, E. (2014). PACDIN statement of methods. Vehicle System Dynamics, 53(3), 402-411. doi:10.1080/00423114.2014.963126Tur, M., García, E., Baeza, L., & Fuenmayor, F. J. (2014). A 3D absolute nodal coordinate finite element model to compute the initial configuration of a railway catenary. Engineering Structures, 71, 234-243. doi:10.1016/j.engstruct.2014.04.015Gregori, S., Tur, M., Nadal, E., Aguado, J. V., Fuenmayor, F. J., & Chinesta, F. (2017). Fast simulation of the pantograph–catenary dynamic interaction. Finite Elements in Analysis and Design, 129, 1-13. doi:10.1016/j.finel.2017.01.007Gerstmayr, J., & Shabana, A. A. (2006). Analysis of Thin Beams and Cables Using the Absolute Nodal Co-ordinate Formulation. Nonlinear Dynamics, 45(1-2), 109-130. doi:10.1007/s11071-006-1856-1Collina, A., & Bruni, S. (2002). Numerical Simulation of Pantograph-Overhead Equipment Interaction. Vehicle System Dynamics, 38(4), 261-291. doi:10.1076/vesd.38.4.261.8286Ambrósio, J., Pombo, J., Antunes, P., & Pereira, M. (2014). PantoCat statement of method. Vehicle System Dynamics, 53(3), 314-328. doi:10.1080/00423114.2014.969283Nåvik, P., Rønnquist, A., & Stichel, S. (2017). Variation in predicting pantograph–catenary interaction contact forces, numerical simulations and field measurements. Vehicle System Dynamics, 55(9), 1265-1282. doi:10.1080/00423114.2017.130852

    Assembly Discontinuity Factors for the Neutron Diffusion Equation discretized with the Finite Volume Method. Application to BWR

    Full text link
    This is the author’s version of a work that was accepted for publication in Annals of Nuclear Energy. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Annals of Nuclear Energy, vol. 97 (2016) DOI 10.1016/j.anucene.2016.06.023.The neutron flux spatial distribution in Boiling Water Reactors (BWRs) can be calculated by means of the Neutron Diffusion Equation (NDE), which is a space- and time-dependent differential equation. In steady state conditions, the time derivative terms are zero and this equation is rewritten as an eigenvalue problem. In addition, the spatial partial derivatives terms are transformed into algebraic terms by discretizing the geometry and using numerical methods. As regards the geometrical discretization, BWRs are complex systems containing different components of different geometries and materials, but they are usually modelled as parallelepiped nodes each one containing only one homogenized material to simplify the solution of the NDE. There are several techniques to correct the homogenization in the node, but the most commonly used in BWRs is that based on Assembly Discontinuity Factors (ADFs). As regards numerical methods, the Finite Volume Method (FVM) is feasible and suitable to be applied to the NDE. In this paper, a FVM based on a polynomial expansion method has been used to obtain the matrices of the eigenvalue problem, assuring the accomplishment of the ADFs for a BWR This eigenvalue problem has been solved by means of the SLEPc library. (C) 2016 Elsevier Ltd. All rights reserved.This work has been partially supported by the Spanish Ministerio de Eduacion Cultura y Deporte under the grant FPU13/01009, the Spanish Ministerio de Ciencia e Innovacion under projects ENE2014-59442-P, the Spanish Ministerio de Economia y Competitividad and the European Fondo Europeo de Desarrollo Regional (FEDER) under project ENE2015-68353-P (MINECO/FEDER), the Generalitat Valenciana under projects PROMETEOII/2014/008, the Universitat Politecnica de Valencia under project UPPTE/2012/118, and the Spanish Ministerio de Economia y Competitividad under the project TIN2013-41049-P.Bernal-Garcia, A.; Román Moltó, JE.; Miró Herrero, R.; Verdú Martín, GJ. (2016). Assembly Discontinuity Factors for the Neutron Diffusion Equation discretized with the Finite Volume Method. Application to BWR. Annals of Nuclear Energy. 97:76-85. https://doi.org/10.1016/j.anucene.2016.06.023S76859

    Stochastic Monte Carlo simulations of the pantograph-catenary dynamic interaction to allow for uncertainties introduced during catenary installation

    Full text link
    "This is an Accepted Manuscript of an article published by Taylor & Francis inVehicle System Dynamics on APR 3 2019, available online: https://www.tandfonline.com/doi/full/10.1080/00423114.2018.1473617."[EN] The simulation of the pantograph-catenary dynamic interaction is at present mainly based on deterministic approaches. However, any errors made during the catenary stringing process are sources of variability that can affect the dynamic performance of the system. In this paper, we analyse the influence of dropper length, dropper spacing and support height errors on the current collection quality by applying a classic Monte Carlo method to obtain the probability density functions of several output quantities. The effects of installation errors are also studied for a range of train speeds. Finally, the pre-sag that, on average, produces the best behaviour of the system is identified, allowing for the uncertainty in the catenary installation. The results obtained show the convenience to consider variability in pantograph-catenary dynamic simulations.The authors would like to acknowledge the financial support received from the FPU program offered by the Spanish Ministry of Education, Culture and Sports (Ministerio de Educacion, Cultura y Deportes) [grant number FPU13/04191]. The funding provided by the Regional Government of Valencia (Generalitat Valenciana) [PROMETEO/2016/007] and the Spanish Ministry of Economy, Industry and Competitiveness (Ministerio de Economia, Industria y Competitividad) [TRA2017-84736-R] is also acknowledged.Gregori Verdú, S.; Tur Valiente, M.; Tarancón Caro, JE.; Fuenmayor Fernández, F. (2019). Stochastic Monte Carlo simulations of the pantograph-catenary dynamic interaction to allow for uncertainties introduced during catenary installation. Vehicle System Dynamics. 57(4):471-492. https://doi.org/10.1080/00423114.2018.1473617S471492574Bruni, S., Ambrosio, J., Carnicero, A., Cho, Y. H., Finner, L., Ikeda, M., … Zhang, W. (2014). The results of the pantograph–catenary interaction benchmark. Vehicle System Dynamics, 53(3), 412-435. doi:10.1080/00423114.2014.953183Gregori, S., Tur, M., Nadal, E., & Fuenmayor, F. J. (2017). An approach to geometric optimisation of railway catenaries. Vehicle System Dynamics, 56(8), 1162-1186. doi:10.1080/00423114.2017.1407434Collina, A., & Bruni, S. (2002). Numerical Simulation of Pantograph-Overhead Equipment Interaction. Vehicle System Dynamics, 38(4), 261-291. doi:10.1076/vesd.38.4.261.8286Shabana, A. A. (1998). Nonlinear Dynamics, 16(3), 293-306. doi:10.1023/a:1008072517368Tur, M., García, E., Baeza, L., & Fuenmayor, F. J. (2014). A 3D absolute nodal coordinate finite element model to compute the initial configuration of a railway catenary. Engineering Structures, 71, 234-243. doi:10.1016/j.engstruct.2014.04.015Ambrósio, J., Pombo, J., Antunes, P., & Pereira, M. (2014). PantoCat statement of method. Vehicle System Dynamics, 53(3), 314-328. doi:10.1080/00423114.2014.969283Herrador, M. Á., Asuero, A. G., & González, A. G. (2005). Estimation of the uncertainty of indirect measurements from the propagation of distributions by using the Monte-Carlo method: An overview. Chemometrics and Intelligent Laboratory Systems, 79(1-2), 115-122. doi:10.1016/j.chemolab.2005.04.010Dudley, R. M. (1978). Central Limit Theorems for Empirical Measures. The Annals of Probability, 6(6), 899-929. doi:10.1214/aop/1176995384Bonett, D. G. (2006). Approximate confidence interval for standard deviation of nonnormal distributions. Computational Statistics & Data Analysis, 50(3), 775-782. doi:10.1016/j.csda.2004.10.003Efron, B., & Tibshirani, R. J. (1994). An Introduction to the Bootstrap. doi:10.1201/9780429246593Cho, Y. H., Lee, K., Park, Y., Kang, B., & Kim, K. (2010). Influence of contact wire pre-sag on the dynamics of pantograph–railway catenary. International Journal of Mechanical Sciences, 52(11), 1471-1490. doi:10.1016/j.ijmecsci.2010.04.00

    Calculation of Lambda modes of the multi-group neutron transport equation using the discrete ordinates and Finite Difference Method

    Full text link
    [EN] The method explained in this paper solves the steady-state of the neutron transport equation for 1D and 2D systems modeled with Cartesian geometry, by using the Discrete Ordinates method SN for the angular discretization and the Finite Difference Method for the spatial discretization. The method applies the multi-group approach for any energy discretization, including upscattering terms. The method solves the steady-state equation by solving a generalized eigenvalue problem by means of a Krylov-Schur method. One of the main advantages of the method is the capability to calculate multiple eigenfunctions. The Discrete Ordinates methodology is used for the angular discretization, which uses a simple formulation involving the angles and direction cosines. The spatial discretization with Finite Difference Method is selected for its simplicity. The method is validated with several one-dimensional benchmark problems and four two dimensional benchmark problems. The results show good agreement with respect to the reference results for all the cases studied.This work has been partially supported by the Spanish Agencia Estatal de Investigation [Grant No. BES-2016-076782], Ministerio de Eduacion Cultura y Deporte [Grant No. FPU13/01009] and the Spanish Ministerio de Economia Industria y Competitividad [project ENE2015-68353-P].Morató-Rafet, S.; Bernal, Á.; Miró Herrero, R.; Román Moltó, JE.; Verdú Martín, GJ. (2020). Calculation of Lambda modes of the multi-group neutron transport equation using the discrete ordinates and Finite Difference Method. Annals of Nuclear Energy. 137:1-15. https://doi.org/10.1016/j.anucene.2019.107077S115137Abu-Shumays, I. K. (2001). ANGULAR QUADRATURES FOR IMPROVED TRANSPORT COMPUTATIONS. Transport Theory and Statistical Physics, 30(2-3), 169-204. doi:10.1081/tt-100105367Alcouffe, R.E., Baker, R.S., Brinkley, F.W., Marr, D.R., O’Dell, R.D., Walters, W.F., 1995. Dantsys: a diffusion accelerated neutral particle transport code system.Bernal, Á., Hébert, A., Roman, J. E., Miró, R., & Verdú, G. (2017). A Krylov–Schur solution of the eigenvalue problem for the neutron diffusion equation discretized with the Raviart–Thomas method. Journal of Nuclear Science and Technology, 54(10), 1085-1094. doi:10.1080/00223131.2017.1344577Bernal García, Á., 2018. Development of a 3d modal neutron code with the finite volume method for the diffusion and discrete ordinates transport equations. Application to nuclear safety analyses (Ph.D. thesis).Brantley, P. S., & Larsen, E. W. (2000). The SimplifiedP3Approximation. Nuclear Science and Engineering, 134(1), 1-21. doi:10.13182/nse134-01Capilla, M., Talavera, C. F., Ginestar, D., & Verdú, G. (2008). A nodal collocation approximation for the multi-dimensional equations – 2D applications. Annals of Nuclear Energy, 35(10), 1820-1830. doi:10.1016/j.anucene.2008.04.008Capilla, M. T., Talavera, C. F., Ginestar, D., & Verdú, G. (2018). Numerical analysis of the 2D C5G7 MOX benchmark using PL equations and a nodal collocation method. Annals of Nuclear Energy, 114, 32-41. doi:10.1016/j.anucene.2017.12.002Carreño, A., Vidal-Ferràndiz, A., Ginestar, D., & Verdú, G. (2018). Block hybrid multilevel method to compute the dominant λ-modes of the neutron diffusion equation. Annals of Nuclear Energy, 121, 513-524. doi:10.1016/j.anucene.2018.08.010Hébert, A., 2009. Applied reactor physics, Presses inter Polytechnique.Hernandez, V., Roman, J. E., & Vidal, V. (2005). SLEPc. ACM Transactions on Mathematical Software, 31(3), 351-362. doi:10.1145/1089014.1089019Issa, J. G., Riyait, N. S., Goddard, A. J. H., & Stott, G. E. (1986). Multigroup application of the anisotropic FEM code FELTRAN to one, two, three-dimensions and R-Z problems. Progress in Nuclear Energy, 18(1-2), 251-264. doi:10.1016/0149-1970(86)90031-4Jung, Y., 2010. ntracer v1. 0 methodology manual, SNURPL-CM001 (10), Seoul National University Reactor Physics Laboratory, Seoul, Republic of Korea.Kashi, S., Minuchehr, A., Zolfaghari, A., & Rokrok, B. (2017). Mesh-free method for numerical solution of the multi-group discrete ordinate neutron transport equation. Annals of Nuclear Energy, 106, 51-63. doi:10.1016/j.anucene.2017.03.034Koch, R., & Becker, R. (2004). Evaluation of quadrature schemes for the discrete ordinates method. Journal of Quantitative Spectroscopy and Radiative Transfer, 84(4), 423-435. doi:10.1016/s0022-4073(03)00260-7Kornreich, D. E., & Parsons, D. K. (2004). The Green’s function method for effective multiplication benchmark calculations in multi-region slab geometry. Annals of Nuclear Energy, 31(13), 1477-1494. doi:10.1016/j.anucene.2004.03.012Lathrop, K. D. (1968). Ray Effects in Discrete Ordinates Equations. Nuclear Science and Engineering, 32(3), 357-369. doi:10.13182/nse68-4Lewis, E.E., Miller, W.F., Jr, 1984. Computational methods of neutron transport.Marleau, G., Hébert, A., Roy, R., 2008. A user guide for dragon 3.06, Report IGE-174 Rev 7.Rhoades, W., Childs, R., 1993. Dort/tort two-and three-dimensional discrete ordinates transport, version 2.7. 3. ornl, oak ridge, Tech. rep., RSIC-CCC-543.Smith, M., Lewis, E., Na, B., 2003. Benchmark on deterministic transport calculations without spatial homogenization: A 2-d/3-d mox fuel assembly 3-d benchmark; 2003.Sood, A., Forster, R. A., & Kent Parsons, D. (2003). Analytical benchmark test set for criticality code verification. Progress in Nuclear Energy, 42(1), 55-106. doi:10.1016/s0149-1970(02)00098-

    El trasplante de células de la glía envolvente del bulbo olfatorio tras lesión de la médula espinal: Estudio experimental en ratas.

    Get PDF
    Objetivo Evaluar el efecto a largo plazo del trasplante de células de la glía envolvente (GE) del bulbo olfatorio tras lesión de la médula espinal. Material y método Se practicó una laminectomía dorsal T8, en 16 ratas adultas Sprague-Dawley, dejando al descubierto la médula espinal subyacente, la cual se bañó con rosa de Bengala durante 10 minutos, antes de lesionarla por iluminación con una fibra óptica acoplada a una lámpara halógena, durante 2,5 minutos. A la mitad de los animales se les inyectó 180.000 células de GE, en 10 μl de medio (grupo GE), y a la otra mitad sólo 10 μl de DMEM (Dulbecco's modified Eagle's medium) (grupo DM). Los animales se sacrificaron a los 90 días de efectuar la lesión y se evaluó el área de médula espinal preservada, la recuperación locomotora y la sensibilidad nociceptiva. Resultados Los animales del grupo GE mostraron un nivel de locomoción superior y retiraron antes la pata al estímulo nociceptivo que los del grupo DM. También hubo una mayor preservación de parénquima medular y más células p75 positivas en el grupo GE que en el DM. Conclusiones El trasplante de GE favorece la preservación de parénquima medular y evita la pérdida de funciones motoras y sensoriales en la rata

    Anomalous effects of radioactive decay rates and capacitance values measured inside a modified Faraday cage: Correlations with space weather

    Full text link
    [EN] Recently we reported (Mili¿an-S¿anchez V. et al., Nucl. Instrum. Methods A, 828 (2016) 210) our experimental results involving 226Ra decay rate and capacitance measurements inside a modified Faraday cage. Our measurements exhibited anomalous effects of unknown origin. In this letter we report new results regarding our investigation into the origins of the observed effects. We report preliminary findings of a correlation analysis between the radioactive decay rates and capacitance time series and space weather related variables (geomagnetic field disturbances and cosmic-ray neutron counts). A significant correlation was observed for specific data sets. The results are presented and possible implications for future work discussed.Scholkmann, F.; Milian Sanchez, V.; Mocholí Salcedo, A.; Milián Enrique, C.; Kolombet, V.; Verdú Martín, GJ. (2017). Anomalous effects of radioactive decay rates and capacitance values measured inside a modified Faraday cage: Correlations with space weather. EPL (Europhysics Letters). 117(6):62002-1-62002-3. doi:10.1209/0295-5075/117/62002S62002-162002-3117

    Fast simulation of the pantograph-catenary dynamic interaction

    Full text link
    Simulation of the pantograph-catenary dynamic interaction has now become a useful tool for designing and optimizing the system. In order to perform accurate simulations, including system non-linearities, the Finite Element Method is commonly employed combined with a time integration scheme, even though the computational time required may be longer than with the use of other simpler approaches. In this paper we propose a two-stage methodology (Offline/Online) which notably reduces the computational cost without any loss in accuracy and makes it possible to successfully carry out very efficient optimizations or even Hardware in the Loop simulations with real-time requirements.The authors would like to acknowledge the financial support received from the FPU program offered by the Ministerio de Educacion, Cultura y Deporte under grant number (FPU13/04191), and also funding from the Universitat Politecnica de Valencia and the Generalitat Valenciana (PROMETEO/2016/007).Gregori Verdú, S.; Tur Valiente, M.; Nadal Soriano, E.; Aguado, J.; Fuenmayor Fernández, FJ.; Chinesta, F. (2017). Fast simulation of the pantograph-catenary dynamic interaction. Finite Elements in Analysis and Design. 129:1-13. https://doi.org/10.1016/j.finel.2017.01.007S11312

    Psychological intervention program to control stress in youth soccer players

    Get PDF
    The influence on the psychological well-being of the players and their sports performance seems to be one of the keys to the current sports practice. The purpose of this study was to determine the effectiveness of a psychological intervention program for stress control in youth soccer players. A total sample of 19 male youth soccer players (age: 16.3 ± 0.99 years; years playing soccer: 10.89 ± 1.56 years) completed the current research. The Psychological Characteristics Questionnaire related to Sports Performance (CPRD) was used to assess stress factors related to sports competition. A program based on Cognitive-Behavioral Therapy was implemented during eight sessions of approximately 50 min each. A pre-post design was used and statistical differences between pre- and post-measures were checked through dependent sample t-tests. The results indicated that the post-test scores were higher than the pre-tests in "Influence of the Evaluation of Performance" and "Mental Skills" factors, which supposes a significant improvement of the stress management related to performance evaluation, as well as the use of psychological resources and techniques. In addition, the post-test scores were also higher in the "Stress Control" factor, although in this case the differences were not statistically significant. Practical indications deriving from the findings of this study can help youth soccer players to manage the stress of competition using a psychological training program

    A modal coordinate catenary model for the real-time simulations of the pantograph-catenary dynamic interaction

    Full text link
    [EN] The computational cost required to simulate the pantograph-catenary dynamic interaction can be a limiting factor in certain applications. Specifically, for Hardware-in-the-Loop (HIL) simulations, real-time capabilities of the software are imperative. In this paper, we propose to combine a modal coordinate approach with an offline/online strategy to build a very efficient simulation strategy. The proposed approach preserves the accuracy of the results, compared with those obtained by classical finite element strategies. We also define and validate a criterion for a priori truncation of the modal basis and analyse the effect of explicit treatment of the interaction force. The results show that the method presented could be used in pantograph HIL tests.The authors would like to acknowledge the funding provided by the Regional Government of Valencia (PROMETEO/2016/007) and the Spanish Ministry of Economy, Industry and Competitiveness (TRA2017-84736-R).Gregori Verdú, S.; Tur Valiente, M.; Pedrosa Sanchez, AM.; Tarancón Caro, JE.; Fuenmayor Fernández, F. (2019). A modal coordinate catenary model for the real-time simulations of the pantograph-catenary dynamic interaction. Finite Elements in Analysis and Design. 162:1-12. https://doi.org/10.1016/j.finel.2019.05.001S11216
    corecore