36 research outputs found

    Onecut is a direct neural-specific transcriptional activator of Rx in Ciona intestinalis

    Get PDF
    AbstractRetinal homeobox (Rx) genes play a crucial and conserved role in the development of the anterior neural plate of metazoans. During chordate evolution, they have also acquired a novel function in the control of eye formation and neurogenesis. To characterize the Rx genetic cascade and shed light on the mechanisms that led to the acquisition of this new role in eye development, we studied Rx transcriptional regulation using the ascidian, Ciona intestinalis. Through deletion analysis of the Ci-Rx promoter, we have identified two distinct enhancer elements able to induce Ci-Rx specific expression in the anterior part of the CNS and in the photosensory organ at tailbud and larva stages. Bioinformatic analysis highlighted the presence of two Onecut binding sites contained in these enhancers, so we explored the role of this transcription factor in the regulation of Ci-Rx. By in situ hybridization, we first confirmed that these genes are co-expressed in the same cells. Through a series of in vivo and in vitro experiments, we then demonstrated that the two Onecut sites are responsible for enhancer activation in Ci-Rx endogenous territories. We also demonstrated in vivo that Onecut misexpression is able to induce ectopic activation of the Rx promoter. Finally, we demonstrated that Ci-Onecut is able to promote Ci-Rx expression in the sensory vesicle. Together, these results support the conclusion that in Ciona embryogenesis, Ci-Rx expression is under the control of the Onecut transcription factor and that this factor is necessary and sufficient to specifically activate Ci-Rx through two enhancer elements

    Evolution of anterior Hox regulatory elements among chordates

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The <it>Hox </it>family of transcription factors has a fundamental role in segmentation pathways and axial patterning of embryonic development and their clustered organization is linked with the regulatory mechanisms governing their coordinated expression along embryonic axes. Among chordates, of particular interest are the <it>Hox </it>paralogous genes in groups 1-4 since their expression is coupled to the control of regional identity in the anterior nervous system, where the highest structural diversity is observed.</p> <p>Results</p> <p>To investigate the degree of conservation in <it>cis</it>-regulatory components that form the basis of <it>Hox </it>expression in the anterior nervous system, we have used assays for transcriptional activity in ascidians and vertebrates to compare and contrast regulatory potential. We identified four regulatory sequences located near the <it>CiHox1, CiHox2 </it>and <it>CiHox4 </it>genes of the ascidian <it>Ciona intestinalis </it>which direct neural specific domains of expression. Using functional assays in <it>Ciona </it>and vertebrate embryos in combination with sequence analyses of enhancer fragments located in similar positions adjacent to <it>Hox </it>paralogy group genes, we compared the activity of these four <it>Ciona cis</it>-elements with a series of neural specific enhancers from the amphioxus <it>Hox1-3 </it>genes and from mouse <it>Hox </it>paralogous groups 1-4.</p> <p>Conclusions</p> <p>This analysis revealed that Kreisler and Krox20 dependent enhancers critical in segmental regulation of the hindbrain appear to be specific for the vertebrate lineage. In contrast, neural enhancers that function as <it>Hox </it>response elements through the action of Hox/Pbx binding motifs have been conserved during chordate evolution. The functional assays reveal that these <it>Hox </it>response <it>cis</it>-elements are recognized by the regulatory components of different and extant species. Together, our results indicate that during chordate evolution, <it>cis</it>-elements dependent upon Hox/Pbx regulatory complexes, are responsible for key aspects of segmental <it>Hox </it>expression in neural tissue and appeared with urochordates after cephalochordate divergence.</p

    Fishing for Targets of Alien Metabolites: A Novel Peroxisome Proliferator-Activated Receptor (PPAR) Agonist from a Marine Pest

    Get PDF
    Although the chemical warfare between invasive and native species has become a central problem in invasion biology, the molecular mechanisms by which bioactive metabolites from invasive pests influence local communities remain poorly characterized. This study demonstrates that the alkaloid caulerpin (CAU)—a bioactive component of the green alga Caulerpa cylindracea that has invaded the entire Mediterranean basin—is an agonist of peroxisome proliferator-activated receptors (PPARs). Our interdisciplinary study started with the in silico prediction of the ligand-protein interaction, which was then validated by in vivo, ex vivo and in vitro assays. On the basis of these results, we candidate CAU as a causal factor of the metabolic and behavioural disorders observed in Diplodus sargus, a native edible fish of high ecological and commercial relevance, feeding on C. cylindracea. Moreover, given the considerable interest in PPAR activators for the treatment of relevant human diseases, our findings are also discussed in terms of a possible nutraceutical/pharmacological valorisation of the invasive algal biomasses, supporting an innovative strategy for conserving biodiversity as an alternative to unrealistic campaigns for the eradication of invasive pest

    Psychological treatments and psychotherapies in the neurorehabilitation of pain. Evidences and recommendations from the italian consensus conference on pain in neurorehabilitation

    Get PDF
    BACKGROUND: It is increasingly recognized that treating pain is crucial for effective care within neurological rehabilitation in the setting of the neurological rehabilitation. The Italian Consensus Conference on Pain in Neurorehabilitation was constituted with the purpose identifying best practices for us in this context. Along with drug therapies and physical interventions, psychological treatments have been proven to be some of the most valuable tools that can be used within a multidisciplinary approach for fostering a reduction in pain intensity. However, there is a need to elucidate what forms of psychotherapy could be effectively matched with the specific pathologies that are typically addressed by neurorehabilitation teams. OBJECTIVES: To extensively assess the available evidence which supports the use of psychological therapies for pain reduction in neurological diseases. METHODS: A systematic review of the studies evaluating the effect of psychotherapies on pain intensity in neurological disorders was performed through an electronic search using PUBMED, EMBASE, and the Cochrane Database of Systematic Reviews. Based on the level of evidence of the included studies, recommendations were outlined separately for the different conditions. RESULTS: The literature search yielded 2352 results and the final database included 400 articles. The overall strength of the recommendations was medium/low. The different forms of psychological interventions, including Cognitive-Behavioral Therapy, cognitive or behavioral techniques, Mindfulness, hypnosis, Acceptance and Commitment Therapy (ACT), Brief Interpersonal Therapy, virtual reality interventions, various forms of biofeedback and mirror therapy were found to be effective for pain reduction in pathologies such as musculoskeletal pain, fibromyalgia, Complex Regional Pain Syndrome, Central Post-Stroke pain, Phantom Limb Pain, pain secondary to Spinal Cord Injury, multiple sclerosis and other debilitating syndromes, diabetic neuropathy, Medically Unexplained Symptoms, migraine and headache. CONCLUSIONS: Psychological interventions and psychotherapies are safe and effective treatments that can be used within an integrated approach for patients undergoing neurological rehabilitation for pain. The different interventions can be specifically selected depending on the disease being treated. A table of evidence and recommendations from the Italian Consensus Conference on Pain in Neurorehabilitation is also provided in the final part of the pape

    Natural Variation of Model Mutant Phenotypes in Ciona intestinalis

    Get PDF
    BACKGROUND: The study of ascidians (Chordata, Tunicata) has made a considerable contribution to our understanding of the origin and evolution of basal chordates. To provide further information to support forward genetics in Ciona intestinalis, we used a combination of natural variation and neutral population genetics as an approach for the systematic identification of new mutations. In addition to the significance of developmental variation for phenotype-driven studies, this approach can encompass important implications in evolutionary and population biology. METHODOLOGY/PRINCIPAL FINDINGS: Here, we report a preliminary survey for naturally occurring mutations in three geographically interconnected populations of C. intestinalis. The influence of historical, geographical and environmental factors on the distribution of abnormal phenotypes was assessed by means of 12 microsatellites. We identified 37 possible mutant loci with stereotyped defects in embryonic development that segregate in a way typical of recessive alleles. Local populations were found to differ in genetic organization and frequency distribution of phenotypic classes. CONCLUSIONS/SIGNIFICANCE: Natural genetic polymorphism of C. intestinalis constitutes a valuable source of phenotypes for studying embryonic development in ascidians. Correlating genetic structure and the occurrence of abnormal phenotypes is a crucial focus for understanding the selective forces that shape natural finite populations, and may provide insights of great importance into the evolutionary mechanisms that generate animal diversity

    What is the role of the placebo effect for pain relief in neurorehabilitation? Clinical implications from the Italian consensus conference on pain in neurorehabilitation

    Get PDF
    Background: It is increasingly acknowledged that the outcomes of medical treatments are influenced by the context of the clinical encounter through the mechanisms of the placebo effect. The phenomenon of placebo analgesia might be exploited to maximize the efficacy of neurorehabilitation treatments. Since its intensity varies across neurological disorders, the Italian Consensus Conference on Pain in Neurorehabilitation (ICCP) summarized the studies on this field to provide guidance on its use. Methods: A review of the existing reviews and meta-analyses was performed to assess the magnitude of the placebo effect in disorders that may undergo neurorehabilitation treatment. The search was performed on Pubmed using placebo, pain, and the names of neurological disorders as keywords. Methodological quality was assessed using a pre-existing checklist. Data about the magnitude of the placebo effect were extracted from the included reviews and were commented in a narrative form. Results: 11 articles were included in this review. Placebo treatments showed weak effects in central neuropathic pain (pain reduction from 0.44 to 0.66 on a 0-10 scale) and moderate effects in postherpetic neuralgia (1.16), in diabetic peripheral neuropathy (1.45), and in pain associated to HIV (1.82). Moderate effects were also found on pain due to fibromyalgia and migraine; only weak short-term effects were found in complex regional pain syndrome. Confounding variables might have influenced these results. Clinical implications: These estimates should be interpreted with caution, but underscore that the placebo effect can be exploited in neurorehabilitation programs. It is not necessary to conceal its use from the patient. Knowledge of placebo mechanisms can be used to shape the doctor-patient relationship, to reduce the use of analgesic drugs and to train the patient to become an active agent of the therapy

    What is the role of the placebo effect for pain relief in neurorehabilitation? Clinical implications from the Italian Consensus Conference on Pain in Neurorehabilitation

    Get PDF
    Background: It is increasingly acknowledged that the outcomes of medical treatments are influenced by the context of the clinical encounter through the mechanisms of the placebo effect. The phenomenon of placebo analgesia might be exploited to maximize the efficacy of neurorehabilitation treatments. Since its intensity varies across neurological disorders, the Italian Consensus Conference on Pain in Neurorehabilitation (ICCP) summarized the studies on this field to provide guidance on its use. Methods: A review of the existing reviews and meta-analyses was performed to assess the magnitude of the placebo effect in disorders that may undergo neurorehabilitation treatment. The search was performed on Pubmed using placebo, pain, and the names of neurological disorders as keywords. Methodological quality was assessed using a pre-existing checklist. Data about the magnitude of the placebo effect were extracted from the included reviews and were commented in a narrative form. Results: 11 articles were included in this review. Placebo treatments showed weak effects in central neuropathic pain (pain reduction from 0.44 to 0.66 on a 0-10 scale) and moderate effects in postherpetic neuralgia (1.16), in diabetic peripheral neuropathy (1.45), and in pain associated to HIV (1.82). Moderate effects were also found on pain due to fibromyalgia and migraine; only weak short-term effects were found in complex regional pain syndrome. Confounding variables might have influenced these results. Clinical implications: These estimates should be interpreted with caution, but underscore that the placebo effect can be exploited in neurorehabilitation programs. It is not necessary to conceal its use from the patient. Knowledge of placebo mechanisms can be used to shape the doctor-patient relationship, to reduce the use of analgesic drugs and to train the patient to become an active agent of the therapy
    corecore