30 research outputs found
Low energy peptide fragmentations in an ESI-Q-Tof type mass spectrometer
154MF Times Cited:4 Cited References Count:51Efficient peptide sequencing relies on both high quality MS/MS data acquisition and exhaustive knowledge of gas-phase dissociation mechanisms. We report our contribution to the elaboration of more comprehensive fragmentation models required for efficient automated MS/MS spectra interpretation. Following a statistical approach, various peptides (296 sequences of variable compositions and lengths) were prepared and subjected to low-energy collision-induced dissociations (CID) in an electrospray hybrid instrument (ESI-Q-q-Tof type mass spectrometer) that has retained relatively limited attention so far. Besides, our studies were focused on low molecular weight singly charged peptides that often failed to be identified by sequencing algorithms. Only half of the studied compounds showed charge directed dissociations in accordance with the mobile proton model producing fragment ions directly related to the primary sequence. For the peptides that did not exhibit the expected fragment ion series, alternative dissociation behaviors issued from complex rearrangements were evidenced
Disclosing the Preferential Mercury Chelation by SeCys Containing Peptides over Their Cys Analogues
: Methylmercury, mercury (II), and mercury (I) chlorides were found to react with vasopressin, a nonapeptide hormone cyclized by two cysteine residues, and its mono- and diselenium analogues to form several mercury-peptide adducts. The replacement of Cys by SeCys in vasopressin increased the reactivity toward methylmercury, with the predominant formation of -Se/S-Hg-Se-bridged structures and the consequent demethylation of methylmercury. In competitive experiments, CH3HgCl reacted preferentially with the diselenium analogue rather than with vasopressin. The diselenium peptide also showed the capability to displace the CH3Hg moiety bound to S in vasopressin. These results open a promising perspective for the use of selenopeptides for methylmercury chelation and detoxification strategies
Mechanistic Evaluations of the Effects of Auranofin Triethylphosphine Replacement with a Trimethylphosphite Moiety
Auranofin, a gold(I)-based complex, is under clinical trials for application as an anticancer agent for the treatment of nonsmall-cell lung cancer and ovarian cancer. In the past years, different derivatives have been developed, modifying gold linear ligands in the search for new gold complexes endowed with a better pharmacological profile. Recently, a panel of four gold(I) complexes, inspired by the clinically established compound auranofin, was reported by our research group. As described, all compounds possess an [Au{P(OMe)3}]+ cationic moiety, in which the triethylphosphine of the parent compound auranofin was replaced with an oxygen-rich trimethylphosphite ligand. The gold(I) linear coordination geometry was complemented by Cl-, Br-, I-, and the auranofin-like thioglucose tetraacetate ligand. As previously reported, despite their close similarity to auranofin, the panel compounds exhibited some peculiar and distinctive features, such as lower log P values which can induce relevant differences in the overall pharmacokinetic profiles. To get better insight into the P-Au strength and stability, an extensive study was carried out for relevant biological models, including three different vasopressin peptide analogues and cysteine, using 31P NMR and LC-ESI-MS. A DFT computational study was also carried out for a better understanding of the theoretical fundamentals of the disclosed differences with regard to triethylphosphine parent compounds
Disclosing the Preferential Mercury Chelation by SeCys Containing Peptides over Their Cys Analogues
Methylmercury, mercury (II), and mercury (I) chlorides were found to react with vasopressin, a nonapeptide hormone cyclized by two cysteine residues, and its mono- and diselenium analogues to form several mercury-peptide adducts. The replacement of Cys by SeCys in vasopressin increased the reactivity toward methylmercury, with the predominant formation of -Se/S-Hg-Se-bridged structures and the consequent demethylation of methylmercury. In competitive experiments, CH3HgCl reacted preferentially with the diselenium analogue rather than with vasopressin. The diselenium peptide also showed the capability to displace the CH3Hg moiety bound to S in vasopressin. These results open a promising perspective for the use of selenopeptides for methylmercury chelation and detoxification strategies