270 research outputs found

    Non-linear finite-element analysis of the shear response in prestressed concrete bridges

    Get PDF
    For the structural assessment of concrete bridges, the non-linear finite-element method has become an important and increasingly used tool. The method has shown a great potential to reveal higher load-carrying capacity compared with conventional assessment methods. However, the modelling method used for reinforced and prestressed concrete members subjected to shear and torsion has been questioned. The aim of this study is to present an analysis method for evaluation of the load-carrying capacity of prestressed concrete bridges, when failure resulting from shear and torsion is the main problem. The modelling method used was previously worked out and verified for shear-type cracking and shear failure. Here, shell elements with embedded reinforcement were used together with non-linear material models, taking into account the fracture energy of cracking plain concrete and the reduction of the concrete compression strength owing to lateral tensile strain. Analyses with the method proposed have shown to predict the shear response and the shear capacity on the safe side. In the work presented here, the load-carrying capacity of a box-girder bridge was evaluated as a case study. The whole bridge was modelled, but only the part that was most critical to shear and torsion was modelled according to the method previously worked out and was combined with beam elements for the rest of the bridge. The case study showed a substantially higher load-carrying capacity for the bridge compared with the assessment with conventional methods. In the evaluation, several possible safety formats were used in combination with the non-linear finite-element method. It was shown that the format using partial safety factors gave unrealistic conservative results; it is more correct to use the semi-probabilistic formats for non-linear finite-element analysis. \ua9 2009 Thomas Telford Ltd

    Införandet av IFRS pÄverkan pÄ analytikers resultatprognoser

    Get PDF
    FrÄn och med Ärsskiftet Är 2005 skall samtliga noterade företag i Sverige redovisa efter IFRS. Syftet med uppsatsen Àr att undersöka om införandet av IFRS pÄverkar analytikers prognoser. Vi har med hjÀlp av statistiska tester dels undersökt om införandet har bidragit till större prognosavvikelser och dels studerat tre av oss utvalda faktorers pÄverkan pÄ storleken pÄ analytikers prognosavvikelser. Vi har Àven genom telefonintervjuer med analytiker undersökt hur de har uppfattat införandet av IFRS. Med hjÀlp av de statistiska testerna har vi inte kunnat pÄvisa att analytiker prognosavvikelser har ökat. Vi har dock funnit signifikans för sambandet att en stor spridning i analytikers prognoser bidrar till stora avvikelser efter införandet av IFRS

    Polymorphisms in Arsenic(+III Oxidation State) Methyltransferase (AS3MT) Predict Gene Expression of AS3MT as Well as Arsenic Metabolism

    Get PDF
    Background: Arsenic is mono- (MMA) and dimethylated (DMA) in humans and the methylation pattern demonstrates large inter-individual differences. The fraction of urinary MMA is a marker for susceptibility to arsenic-related diseases. Objectives: The impact of polymorphisms in five methyltransferase genes on arsenic metabolism was evaluated in two populations, one in South America, one in southeast Asia. The methyltransferase genes were arsenic(+III)methyltransferase (AS3MT), DNAmethyltransferase 1a and 3b (DNMT1a, DNMT3b), phosphatidylethanolamine Nmethyltransferase (PEMT) and betaine-homocysteine methyltransferase (BHMT). AS3MT expression was analyzed in peripheral blood. Methods: Subjects were women, exposed to arsenic in drinking water in the Argentinean Andes (N=172median urinary arsenic 200 [micro]g/L) and in rural Bangladesh (N=361100g/L, all in early pregnancy). Urinary arsenic metabolites were measured by HPLC-ICPMS. Polymorphisms (N=22) were genotyped with SequenomTM. AS3MT expression was measured with qPCR using TaqManr expression assays. Results: Six AS3MT polymorphisms were significantly associated with arsenic metabolite patterns in both populations (p-values ?0.01). The most frequent AS3MT haplotype in Bangladesh was associated with higher %MMA, and the most frequent in Argentina with lower %MMA and higher %DMA. Four polymorphisms in the DNMTs were associated with metabolite patterns in Bangladesh. Non-coding AS3MT polymorphisms affected gene expression of AS3MT in peripheral blood, demonstrating that one functional impact of AS3MT polymorphisms may be altering levels of gene expression. Conclusions: Polymorphisms in AS3MT significantly predicted As metabolism across these two very different populations, suggesting that AS3MT may have an impact on As metabolite patterns in populations worldwide

    Genetic Polymorphisms Influencing Arsenic Metabolism: Evidence from Argentina

    Get PDF
    The susceptibility to arsenic-induced diseases differs greatly between individuals, possibly due to interindividual variations in As metabolism that affect retention and distribution of toxic metabolites. To elucidate the role of genetic factors in As metabolism, we studied how polymorphisms in six genes affected the urinary metabolite pattern in a group of indigenous women (n = 147) in northern Argentina who were exposed to approximately 200 ÎŒg/L As in drinking water. These women had low urinary percentages of monomethylated As (MMA) and high percentages of dimethylated As (DMA). MMA has been associated with adverse health effects, and DMA has the lowest body retention of the metabolites. The genes studied were arsenic(+III)methyltransferase (AS3MT), glutathione S-transferase omega 1 (GSTO1), 5-methyltetrahydrofolate-homocysteine methyltransferase (MTR), methylenetetrahydrofolate reductase (MTHFR), and glutathione S-transferases mu 1 (GSTM1) and theta 1 (GSTT1). We found three intronic polymorphisms in AS3MT (G12390C, C14215T, and G35991A) associated with a lower percentage of MMA (%MMA) and a higher percentage of DMA (%DMA) in urine. The variant homozygotes showed approximately half the %MMA compared with wild-type homozygotes. These polymorphisms were in strong linkage, with high allelic frequencies (72–76%) compared with other populations. We also saw minor effects of other polymorphisms in the multivariate regression analysis with effect modification for the deletion genotypes for GSTM1 (affecting %MMA) and GSTT1 (affecting %MMA and %DMA). For pregnant women, effect modification was seen for the folate-metabolizing genes MTR and MTHFR. In conclusion, these findings indicate that polymorphisms in AS3MT—and possibly GSTM1, GSTT1, MTR, and MTHFR—are responsible for a large part of the interindividual variation in As metabolism and susceptibility

    Lithium in Drinking Water and Thyroid Function

    Get PDF
    BACKGROUND: High concentrations of lithium in drinking water were previously discovered in the Argentinean Andes Mountains. Lithium is used worldwide for treatment of bipolar disorder and treatment-resistant depression. One known side effect is altered thyroid function. OBJECTIVES: We assessed associations between exposure to lithium from drinking water and other environmental sources and thyroid function. METHODS: Women (n = 202) were recruited in four Andean villages in northern Argentina. Lithium exposure was assessed based on concentrations in spot urine samples, measured by inductively coupled plasma mass spectrometry. Thyroid function was evaluated by plasma free thyroxine (T-4) and pituitary gland thyroid-stimulating hormone (TSH), analyzed by routine immuno metric methods. RESULTS: The median urinary lithium concentration was 3,910 mu g/L (5th, 95th percentiles, 270 mu g/L, 10,400 mu g/L). Median plasma concentrations (5th, 95th percentiles) of T-4 and TSH were 17 pmol/L (13 pmol/L, 21 pmol/L) and 1.9 mIU/L, (0.68 mIU/L, 4.9 mIU/L), respectively. Urine lithium was inversely associated with T-4 [beta for a 1,000-mu g/L increase = -0.19; 95% confidence interval (CI), -0.31 to -0.068; p = 0.002] and positively associated with TSH (beta = 0.096; 95% CI, 0.033 to 0.16; p = 0.003). Both associations persisted after adjustment (for T-4, beta = -0.17; 95% CI, -0.32 to -0.015; p = 0.032; for TSH: beta = 0.089; 95% CI, 0.024 to 0.15; p = 0.007). Urine selenium was positively associated with T-4 (adjusted T-4 for a 1 mu g/L increase: beta = 0.041; 95% CI, 0.012 to 0.071; p = 0.006). CONCLUSIONS: Exposure to lithium via drinking water and other environmental sources may affect thyroid function, consistent with known side effects of medical treatment with lithium. This stresses the need to screen for lithium in all drinking water sources

    Genetic variation in FADS genes is associated with maternal long-chain PUFA status but not with cognitive development of infants in a high fish-eating observational study

    Get PDF
    AbstractLong-chain n-6 and n-3 PUFA (LC-PUFA), arachidonic acid (AA) (20:4n-6) and DHA (22:6n-3), are critical for optimal brain development. These fatty acids can be consumed directly from the diet, or synthesized endogenously from precursor PUFA by Δ-5 (encoded by FADS1) and Δ-6 desaturases (encoded by FADS2). The aim of this study was to determine the potential importance of maternal genetic variability in FADS1 and FADS2 genes to maternal LC-PUFA status and infant neurodevelopment in populations with high fish intakes. The Nutrition Cohorts 1 (NC1) and 2 (NC2) are longitudinal observational mother-child cohorts in the Republic of Seychelles. Maternal serum LC-PUFA was measured at 28 weeks gestation and genotyping for rs174537 (FADS1), rs174561 (FADS1), rs3834458 (FADS1-FADS2) and rs174575 (FADS2) was performed in both cohorts. The children completed the Bayley Scales of Infant Development II (BSID-II) at 30 months in NC1 and at 20 months in NC2. Complete data were available for 221 and 1310 mothers from NC1 and NC2 respectively. With increasing number of rs3834458 minor alleles, maternal concentrations of AA were significantly decreased (NC1 p=0.004; NC2 p<0.001) and precursor:product ratios for linoleic acid (LA) (18:2n-6)-to-AA (NC1 p<0.001; NC2 p<0.001) and α-linolenic acid (ALA) (18:3n-3)-to-DHA were increased (NC2 p=0.028). There were no significant associations between maternal FADS genotype and BSID-II scores in either cohort. A trend for improved PDI was found among infants born to mothers with the minor rs3834458 allele.In these high fish-eating cohorts, genetic variability in FADS genes was associated with maternal AA status measured in serum and a subtle association of the FADS genotype was found with neurodevelopment

    Genetic Variation in Glutathione-Related Genes and Body Burden of Methylmercury

    Get PDF
    BACKGROUND: Exposure to toxic methylmercury (MeHg) through fish consumption is a large problem worldwide, and it has led to governmental recommendations of reduced fish consumption and blacklisting of mercury-contaminated fish. The elimination kinetics of MeHg varies greatly among individuals. Knowledge about the reasons for such variation is of importance for improving the risk assessment for MeHg. One possible explanation is hereditary differences in MeHg metabolism. MeHg is eliminated from the body as a glutathione (GSH) conjugate. OBJECTIVES: We conducted this study to assess the influence of polymorphisms in GSH-synthesizing [glutamyl-cysteine ligase modifier subunit (GCLM-588) and glutamyl-cysteine ligase catalytic subunit (GCLC-129)] or GSH-conjugating [glutathione S-transferase pi 1 (GSTP1-105 and GSTP1-114)] genes on MeHg retention. METHODS: Based on information obtained from questionnaires, 292 subjects from northern Sweden had a high consumption of fish (lean/fat fish two to three times per week or more). We measured total Hg in erythrocytes (Ery-Hg) and long-chain n-3 polyunsaturated fatty acids in plasma (P-PUFA; an exposure marker for fish intake). RESULTS: The GSTP1 genotype modified Ery-Hg; effects were seen for GSTP1-105 and -114 separately, and combining them resulted in stronger effects. We found evidence of effect modification: individuals with zero or one variant allele demonstrated a steeper regression slope for Ery-Hg (p = 0.038) compared with individuals with two or more variant alleles. The GCLM-588 genotype also influenced Ery-Hg (p = 0.035): Individuals with the GCLM-588 TT genotype demonstrated the highest Ery-Hg, but we saw no evidence of effect modification with increasing P-PUFA. CONCLUSIONS: These results suggest a role of GSH-related polymorphisms in MeHg metabolism

    Effect of ocean acidification on the structure and fatty acid composition of a natural plankton community in the Baltic Sea

    Get PDF
    Increasing atmospheric carbon dioxide (CO2) is changing seawater chemistry towards reduced pH, which affects various properties of marine organisms. Coastal and brackish water communities are expected to be less affected by ocean acidification (OA) as these communities are typically adapted to high fluctuations in CO2 and pH. Here we investigate the response of a coastal brackish water plankton community to increasing CO2 levels as projected for the coming decades and the end of this century in terms of community and biochemical fatty acid (FA) composition. A Baltic Sea plankton community was enclosed in a set of offshore mesocosms and subjected to a CO2 gradient ranging from natural concentrations (similar to 347 mu atm fCO(2)) up to values projected for the year 2100 (similar to 1333 mu atm fCO(2)). We show that the phytoplankton community composition was resilient to CO2 and did not diverge between the treatments. Seston FA composition was influenced by community composition, which in turn was driven by silicate and phosphate limitation in the mesocosms and showed no difference between the CO2 treatments. These results suggest that CO2 effects are dampened in coastal communities that already experience high natural fluctuations in pCO(2). Although this coastal plankton community was tolerant of high pCO(2) levels, hypoxia and CO2 uptake by the sea can aggravate acidification and may lead to pH changes outside the currently experienced range for coastal organisms.Peer reviewe
    • 

    corecore