50 research outputs found

    CRISPR immune diversity in simulated and natural microbial populations

    Get PDF
    Coevolution between microbes and their viruses influences the trajectories of these communities through gene transfer and predation. When these communities are a part of the human microbiome, these interactions can also have significant impacts on the health of the human host. The CRISPR adaptive immune system is one of the ways in which microbes defend against viral infection, and it also holds a record of acquired immunity, allowing us to read a history of microbe-viral interactions. In this work, we examine the emergence, impact, and applications of diverse CRISPR immune alleles in microbial populations. Using a mathematical model of CRISPR-mediated host-virus coevolution to simulate microbial populations, we observe the emergence of multiple coexisting CRISPR alleles in a single population, which we call distributed immunity. We find that distributed immunity is most likely to occur in communities with more potential spacers and relatively low viral mutation rates, and that it is linked to increased stability for the host population, while the viral population is driven to lower densities or even to extinction. To see if this phenomenon is also present in natural microbial populations, we examined CRISPR diversity in two human-associated communities: the vaginal microbiomes of pregnant women and the lung microbiomes of cystic fibrosis patients. To investigate the vaginal microbiome, we developed a network-based methodology to identify and extract CRISPR spacers from all species present in samples taken from pregnant women at high and low risk of preterm birth. This approach yielded over 20 different CRISPR types, with spacer content varying among individuals. Coexisting alleles linked to shifts in the abundance of the matched element were detected in one Lactobacillus species in one of the samples, demonstrating the potential of our approach. In the cystic fibrosis lung microbiome, we used this method to identify CRISPRs in four patients infected with the major cystic fibrosis pathogen Pseudomonas aeruginosa. Spacer content was completely different between patients, but no variation was detected within a patient. Finally, we examined spacer diversity in a large global dataset of P. aeruginosa and used the thousands of spacers identified as a tracking tool to monitor dynamics of viral populations. This approach, which we refer to as prototyping, revealed a panmictic P. aeruginosa phage population and holds promise as a tool for tracking mobile elements and personalizing phage therapy treatments

    Evolutionary causes and consequences of diversified CRISPR immune profiles in natural populations

    Get PDF
    Abstract Host-pathogen co-evolution is a significant force which shapes the ecology and evolution of all types of organisms, and such interactions are driven by resistance and immunity mechanisms of the host. Diversity of resistance and immunity can affect the co-evolutionary trajectory of both host and pathogen. The microbial CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR-associated) system is one host immunity mechanism which offers a tractable model for examining the dynamics of diversity in an immune system. In the present article, we review CRISPR variation observed in a variety of natural populations, examine the forces which can push CRISPRs towards high or low diversity, and investigate the consequences of various levels of diversity on microbial populations

    Emergence and Spread of the SARS-CoV-2 Omicron Variant in Alberta Communities Revealed by Wastewater Monitoring

    Get PDF
    Wastewater monitoring of SARS-CoV-2 allows for early detection and monitoring of COVID-19 burden in communities and can track specific variants of concern. Targeted assays enabled relative proportions of SARS-CoV-2 Omicron and Delta variants to be determined across 30 municipalities covering >75% of the province of Alberta (pop. 4.5M) in Canada, from November 2021 to January 2022. Larger cities like Calgary and Edmonton exhibited a more rapid emergence of Omicron relative to smaller and more remote municipalities. Notable exceptions were Banff, a small international resort town, and Fort McMurray, a more remote northern city with a large fly-in worker population. The integrated wastewater signal revealed that the Omicron variant represented close to 100% of SARS-CoV-2 burden prior to the observed increase in newly diagnosed clinical cases throughout Alberta, which peaked two weeks later. These findings demonstrate that wastewater monitoring offers early and reliable population-level results for establishing the extent and spread of emerging pathogens including SARS-CoV-2 variants.Alberta Healt

    Evaluation of Excess Significance Bias in Animal Studies of Neurological Diseases

    Get PDF
    Animal studies generate valuable hypotheses that lead to the conduct of preventive or therapeutic clinical trials. We assessed whether there is evidence for excess statistical significance in results of animal studies on neurological disorders, suggesting biases. We used data from meta-analyses of interventions deposited in Collaborative Approach to Meta-Analysis and Review of Animal Data in Experimental Studies (CAMARADES). The number of observed studies with statistically significant results (O) was compared with the expected number (E), based on the statistical power of each study under different assumptions for the plausible effect size. We assessed 4,445 datasets synthesized in 160 meta-analyses on Alzheimer disease (n = 2), experimental autoimmune encephalomyelitis (n = 34), focal ischemia (n = 16), intracerebral hemorrhage (n = 61), Parkinson disease (n = 45), and spinal cord injury (n = 2). 112 meta-analyses (70%) found nominally (p≤0.05) statistically significant summary fixed effects. Assuming the effect size in the most precise study to be a plausible effect, 919 out of 4,445 nominally significant results were expected versus 1,719 observed (p<10-9). Excess significance was present across all neurological disorders, in all subgroups defined by methodological characteristics, and also according to alternative plausible effects. Asymmetry tests also showed evidence of small-study effects in 74 (46%) meta-analyses. Significantly effective interventions with more than 500 animals, and no hints of bias were seen in eight (5%) meta-analyses. Overall, there are too many animal studies with statistically significant results in the literature of neurological disorders. This observation suggests strong biases, with selective analysis and outcome reporting biases being plausible explanations, and provides novel evidence on how these biases might influence the whole research domain of neurological animal literature. © 2013 Tsilidis et al

    Chemical Approaches To Analyzing RNA Structure Transcriptome‐Wide

    No full text
    RNA molecules can fold into complex two- and three-dimensional shapes that are critical for their function. Chemical probes have long been utilized to interrogate RNA structure and are now considered invaluable resources in the goal of relating structure to function. Recently, the power of deep sequencing and careful chemical probe design have merged, permitting researchers to obtain a holistic understanding of how RNA structure can be utilized to control RNA biology transcriptome-wide. Within this review, we outline the recent advancements in chemical probe design for interrogating RNA structures inside cells and discuss the recent advances in our understanding of RNA biology through the lens of chemical probing

    Fermentation products in the cystic fibrosis airways induce aggregation and dormancy-associated expression profiles in a CF clinical isolate of Pseudomonas aeruginosa.

    No full text
    Pseudomonas aeruginosa is a well-known dominant opportunistic pathogen in cystic fibrosis (CF) with a wide range of metabolic capacities. However, P. aeruginosa does not colonize the airways alone, and benefits from the metabolic products of neighboring cells-especially volatile molecules that can travel between different parts of the airways easily. Here, we present a study that investigates the metabolic, gene expression profiles and phenotypic responses of a P. aeruginosa clinical isolate to fermentation products lactic acid and 2,3-butanediol, metabolites that are produced by facultative anaerobic members of the CF polymicrobial community and potential biomarkers of disease progression. Although previous studies have successfully investigated the metabolic and transcriptional profiles of P. aeruginosa, most have used common lab reference strains that may differ in important ways from clinical isolates. Using transcriptomics and metabolomics with gas chromatography time of flight mass spectrometry, we observe that fermentation products induce pyocyanin production along with the expression of genes involved in P. aeruginosa amino acid utilization, dormancy and aggregative or biofilm modes of growth. These findings have important implications for how interactions within the diverse CF microbial community influence microbial physiology, with potential clinical consequences

    An atlas of posttranslational modifications on RNA binding proteins.

    No full text
    RNA structure and function are intimately tied to RNA binding protein recognition and regulation. Posttranslational modifications are chemical modifications which can control protein biology. The role of PTMs in the regulation RBPs is not well understood, in part due to a lacking analysis of PTM deposition on RBPs. Herein, we present an analysis of posttranslational modifications (PTMs) on RNA binding proteins (RBPs; a PTM RBP Atlas). We curate published datasets and primary literature to understand the landscape of PTMs and use protein-protein interaction data to understand and potentially provide a framework for understanding which enzymes are controlling PTM deposition and removal on the RBP landscape. Intersection of our data with The Cancer Genome Atlas also provides researchers understanding of mutations that would alter PTM deposition. Additional characterization of the RNA-protein interface provided from in-cell UV crosslinking experiments provides a framework for hypotheses about which PTMs could be regulating RNA binding and thus RBP function. Finally, we provide an online database for our data that is easy to use for the community. It is our hope our efforts will provide researchers will an invaluable tool to test the function of PTMs controlling RBP function and thus RNA biology
    corecore