16,374 research outputs found

    Markov and Neural Network Models for Prediction of Structural Deterioration of Stormwater Pipe Assets

    Get PDF
    Storm-water pipe networks in Australia are designed to convey water from rainfall and surface runoff. They do not transport sewerage. Their structural deterioration is progressive with aging and will eventually cause pipe collapse with consequences of service interruption. Predicting structural condition of pipes provides vital information for asset management to prevent unexpected failures and to extend service life. This study focused on predicting the structural condition of storm-water pipes with two objectives. The first objective is the prediction of structural condition changes of the whole network of storm-water pipes by a Markov model at different times during their service life. This information can be used for planning annual budget and estimating the useful life of pipe assets. The second objective is the prediction of structural condition of any particular pipe by a neural network model. This knowledge is valuable in identifying pipes that are in poor condition for repair actions. A case study with closed circuit television inspection snapshot data was used to demonstrate the applicability of these two models

    Estimation of squeeze-film damping and inertial coefficients from experimental free-decay data

    Get PDF
    The results are given for an experimental program concerned with a parametric identification of the damping and inertial coefficients of a cylindrical squeeze-film bearing, through an analysis of transient response data. The results enable the operating range for which a linear model of the squeeze-film is appropriate to be determined. Comparisons are made between the estimated coefficients and theoretical predictions. Presentation is by courtesy of the Council of the Institution of Mechanical Engineers, London

    Design hazard identification and the link to site experience

    Get PDF
    The training, development and routes to charteredship of building design engineers have undergone a major transformation in recent years. Additionally, the duration and quality of site experience being gained by designers is reducing. While accident causation is often complex, previous research shows a potential link between design and construction accidents. The effectiveness of the UK’s Construction (Design and Management) (CDM) Regulations is being questioned, and designers regularly do not recognise the impact they can make on site safety. A newly developed hazard perception test was used to determine if students and design practitioners are able to identify hazards in designs and to establish if site experience impacts hazard identification. The results of the tests show an association between the ability to identify and mitigate hazards and possession of site experience. The results provide empirical evidence that supports previous anecdotal evidence. The results also question if the design engineers of today are suitably equipped to fulfil the designer’s responsibilities under the CDM Regulations

    Applying geomorphological principles and engineering science to develop a phased sediment management plan for Mount St Helens, Washington

    Get PDF
    Thirty-seven years post-eruption, erosion of the debris avalanche at Mount St. Helens continues to supply sediment to the Toutle-Cowlitz River system in quantities that have the potential to lower the Level of Protection (LoP) against flooding unacceptably, making this one of the most protracted gravel-bed river disasters to date. The Portland District, US Army Corps of Engineers (USACE) recently revised its long-term plan for sediment management (originally published in 1985), in order to maintain the LoP above the Congressionally-authorised level, while reducing impacts on fish currently listed under the Endangered Species Act, and minimising the overall cost of managing sediment derived from erosion at Mount St Helens. In revising the plan, the USACE drew on evidence gained from sediment monitoring, modelling and uncertainty analysis, coupled with assessment of future LoP trends under a baseline scenario (continuation of the 1985 sediment management strategy) and feasible alternatives. They applied geomorphological principles and used engineering science to develop a Phased Sediment Management Plan that allows for uncertainty concerning future sediment yields by implementing sediment management actions only as, and when, necessary. The phased plan makes best use of the potential to enhance the sediment trap efficiency and storage capacity of the existing Sediment Retention Structure (SRS) by incrementally raising its spillway and using novel hydraulic structures to build islands in the NFTR and steepen the gradient of the sediment plain upstream of the structure. Dredging is held in reserve, to be performed only when necessary to react to unexpectedly high sedimentation events or when the utility of other measures has been expended. The engineering-geomorphic principles and many of the measures in the Phased Sediment Management Plan are transferrable to other gravel-bed river disasters. The overriding message is that monitoring and adaptive management are crucial components of long-term sediment-disaster management, especially in volcanic landscapes where future sediment yields are characterised by uncertainty and natural variability

    Before You Wade In, Learn to Swim

    Get PDF
    https://digitalcommons.cwu.edu/government_posters/1104/thumbnail.jp

    Watch Children: Your Safety, Our Concern

    Get PDF
    https://digitalcommons.cwu.edu/government_posters/1106/thumbnail.jp

    The Noncommissioned Officer: Images of an Army in Action.

    Get PDF
    https://digitalcommons.cwu.edu/government_posters/1108/thumbnail.jp

    Click! Your Safety, Our Concern

    Get PDF
    https://digitalcommons.cwu.edu/government_posters/1091/thumbnail.jp
    corecore