75 research outputs found
The evolution of natural competence: disentangling costs and benefits of sex in bacteria
One of the most challenging questions in evolutionary biology is how sex has evolved in the face of substantial fitness costs. In this study, we focus on the evolution of bacterial sex in the form of natural transformation, where cells take up exogenous DNA and integrate it into the genome. Besides the physiological cost of producing a DNA uptake system, transformation can potentially impose a genetic cost as a result of an overrepresentation of deleterious mutations in the extracellular DNA pool. On the other hand, the uptake of DNA can be beneficial not only because of genetic effects but also because of the immediate nutritional value of the DNA. To disentangle these fitness costs and benefits, we developed a mathematical model and competed three bacterial types during adaptation to a new environment: competent cells capable of DNA import and digestion; competent cells capable of DNA import, digestion, and recombination; and noncompetent cells. Our results indicate a complex interplay between several physiological and ecological factors, including the rate at which DNA is taken up, the rate of DNA decay in the medium, and the nutritional value of DNA. In finite populations, the recombining type is often favored through the Fisher- Muller effect
Recommended from our members
Sexual Antagonism and the Evolution of X Chromosome Inactivation
In most female mammals, one of the two X chromosomes is inactivated early in embryogenesis. Expression of most genes on this chromosome is shut down, and the inactive state is maintained throughout life in all somatic cells. It is generally believed that X-inactivation evolved as a means of achieving equal gene expression in males and females (dosage compensation). Following degeneration of genes on the Y chromosome, gene expression on X chromosomes in males and females is upregulated. This results in closer to optimal gene expression in males, but deleterious overexpression in females. In response, selection is proposed to favor inactivation of one of the X chromosomes in females, restoring optimal gene expression. Here, we make a first attempt at shedding light on this intricate process from a population genetic perspective, elucidating the sexually antagonistic selective forces involved. We derive conditions for the process to work and analyze evolutionary stability of the system. The implications of our results are discussed in the light of empirical findings and a recently proposed alternative hypothesis for the evolution of X-inactivation.Organismic and Evolutionary Biolog
Non-genetic inheritance and the patterns of antagonistic coevolution
Antagonistic species interactions can lead to coevolutionary genotype or phenotype frequency oscillations, with important implications for ecological and evolutionary processes. However, direct empirical evidence of such oscillations is rare. The rarity of observations is generally attributed to inherent difficulties of ecological and evolutionary long-term studies, to weak or absent interaction between species, or to the absence of negative frequency-dependence
Pathogen evolution in switching environments: a hybrid dynamical system approach
We propose a hybrid dynamical system approach to model the evolution of a
pathogen that experiences different selective pressures according to a
stochastic process. In every environment, the evolution of the pathogen is
described by a version of the Fisher-Haldane-Wright equation while the
switching between environments follows a Markov jump process. We investigate
how the qualitative behavior of a simple single-host deterministic system
changes when the stochastic switching process is added. In particular, we study
the stability in probability of monomorphic equilibria. We prove that in a
"constantly" fluctuating environment, the genotype with the highest mean
fitness is asymptotically stable in probability. However, if the probability of
host switching depends on the genotype composition of the population,
polymorphism can be stably maintained.
This is a corrected version of the paper that appeared in Mathematical
Biosciences 240 (2012), p. 70-75. A corrigendum has appeared in the same
journal.Comment: 15 pages, 4 figure
Evolutionary mysteries in meiosis
Meiosis is a key event of sexual life cycles in eukaryotes. Its mechanistic details have been uncovered in several model organisms, and most of its essential features have received various and often contradictory evolutionary interpretations. In this perspective, we present an overview of these often ‘weird’ features. We discuss the origin of meiosis (origin of ploidy reduction and recombination, two-step meiosis), its secondary modifications (in polyploids or asexuals, inverted meiosis), its importance in punctuating life cycles (meiotic arrests, epigenetic resetting, meiotic asymmetry, meiotic fairness) and features associated with recombination (disjunction constraints, heterochiasmy, crossover interference and hotspots). We present the various evolutionary scenarios and selective pressures that have been proposed to account for these features, and we highlight that their evolutionary significance often remains largely mysterious. Resolving these mysteries will likely provide decisive steps towards understanding why sex and recombination are found in the majority of eukaryotes.</p
Phenotypic and genotypic parallel evolution in parapatric ecotypes of Senecio.
The independent and repeated adaptation of populations to similar environments often results in the evolution of similar forms. This phenomenon creates a strong correlation between phenotype and environment and is referred to as parallel evolution. However, we are still largely unaware of the dynamics of parallel evolution, as well as the interplay between phenotype and genotype within natural systems. Here, we examined phenotypic and genotypic parallel evolution in multiple parapatric Dune-Headland coastal ecotypes of an Australian wildflower, Senecio lautus. We observed a clear trait-environment association in the system, with all replicate populations having evolved along the same phenotypic evolutionary trajectory. Similar phenotypes have arisen via mutational changes occurring in different genes, although many share the same biological functions. Our results shed light on how replicated adaptation manifests at the phenotypic and genotypic levels within populations, and highlight S. lautus as one of the most striking cases of phenotypic parallel evolution in nature
Red Queen Dynamics with Non-Standard Fitness Interactions
Antagonistic coevolution between hosts and parasites can involve rapid fluctuations of genotype frequencies that are known as Red Queen dynamics. Under such dynamics, recombination in the hosts may be advantageous because genetic shuffling can quickly produce disproportionately fit offspring (the Red Queen hypothesis). Previous models investigating these dynamics have assumed rather simple models of genetic interactions between hosts and parasites. Here, we assess the robustness of earlier theoretical predictions about the Red Queen with respect to the underlying host-parasite interactions. To this end, we created large numbers of random interaction matrices, analysed the resulting dynamics through simulation, and ascertained whether recombination was favoured or disfavoured. We observed Red Queen dynamics in many of our simulations provided the interaction matrices exhibited sufficient ‘antagonicity’. In agreement with previous studies, strong selection on either hosts or parasites favours selection for increased recombination. However, fast changes in the sign of linkage disequilibrium or epistasis were only infrequently observed and do not appear to be a necessary condition for the Red Queen hypothesis to work. Indeed, recombination was often favoured even though the linkage disequilibrium remained of constant sign throughout the simulations. We conclude that Red Queen-type dynamics involving persistent fluctuations in host and parasite genotype frequencies appear to not be an artefact of specific assumptions about host-parasite fitness interactions, but emerge readily with the general interactions studied here. Our results also indicate that although recombination is often favoured, some of the factors previously thought to be important in this process such as linkage disequilibrium fluctuations need to be reassessed when fitness interactions between hosts and parasites are complex
The diversity of reproductive parasites among arthropods: Wolbachia do not walk alone
<p>Abstract</p> <p>Background</p> <p>Inherited bacteria have come to be recognised as important components of arthropod biology. In addition to mutualistic symbioses, a range of other inherited bacteria are known to act either as reproductive parasites or as secondary symbionts. Whilst the incidence of the α-proteobacterium <it>Wolbachia </it>is relatively well established, the current knowledge of other inherited bacteria is much weaker. Here, we tested 136 arthropod species for a range of inherited bacteria known to demonstrate reproductive parasitism, sampling each species more intensively than in past surveys.</p> <p>Results</p> <p>The inclusion of inherited bacteria other than <it>Wolbachia </it>increased the number of infections recorded in our sample from 33 to 57, and the proportion of species infected from 22.8% to 32.4%. Thus, whilst <it>Wolbachia </it>remained the dominant inherited bacterium, it alone was responsible for around half of all inherited infections of the bacteria sampled, with members of the <it>Cardinium</it>, <it>Arsenophonus </it>and <it>Spiroplasma ixodetis </it>clades each occurring in 4% to 7% of all species. The observation that infection was sometimes rare within host populations, and that there was variation in presence of symbionts between populations indicates that our survey will itself underscore incidence.</p> <p>Conclusion</p> <p>This extensive survey demonstrates that at least a third of arthropod species are infected by a diverse assemblage of maternally inherited bacteria that are likely to strongly influence their hosts' biology, and indicates an urgent need to establish the nature of the interaction between non-<it>Wolbachia </it>bacteria and their hosts.</p
Does Sex Speed Up Evolutionary Rate and Increase Biodiversity?
Most empirical and theoretical studies have shown that sex increases the rate of evolution, although evidence of sex constraining genomic and epigenetic variation and slowing down evolution also exists. Faster rates with sex have been attributed to new gene combinations, removal of deleterious mutations, and adaptation to heterogeneous environments. Slower rates with sex have been attributed to removal of major genetic rearrangements, the cost of finding a mate, vulnerability to predation, and exposure to sexually transmitted diseases. Whether sex speeds or slows evolution, the connection between reproductive mode, the evolutionary rate, and species diversity remains largely unexplored. Here we present a spatially explicit model of ecological and evolutionary dynamics based on DNA sequence change to study the connection between mutation, speciation, and the resulting biodiversity in sexual and asexual populations. We show that faster speciation can decrease the abundance of newly formed species and thus decrease long-term biodiversity. In this way, sex can reduce diversity relative to asexual populations, because it leads to a higher rate of production of new species, but with lower abundances. Our results show that reproductive mode and the mechanisms underlying it can alter the link between mutation, evolutionary rate, speciation and biodiversity and we suggest that a high rate of evolution may not be required to yield high biodiversity
- …