4,787 research outputs found
Leptons from Dark Matter Annihilation in Milky Way Subhalos
Numerical simulations of dark matter collapse and structure formation show
that in addition to a large halo surrounding the baryonic component of our
galaxy, there also exists a significant number of subhalos that extend hundreds
of kiloparsecs beyond the edge of the observable Milky Way. We find that for
dark matter (DM) annihilation models, galactic subhalos can significantly
modify the spectrum of electrons and positrons as measured at our galactic
position. Using data from the recent Via Lactea II simulation we include the
subhalo contribution of electrons and positrons as boundary source terms for
simulations of high energy cosmic ray propagation with a modified version of
the publicly available GALPROP code. Focusing on the DM DM -> 4e annihilation
channel, we show that including subhalos leads to a better fit to both the
Fermi and PAMELA data. The best fit gives a dark matter particle mass of 1.2
TeV, for boost factors of 90 in the main halo and 1950-3800 in the subhalos
(depending on assumptions about the background), in contrast to the 0.85 TeV
mass that gives the best fit in the main halo-only scenario. These fits suggest
that at least a third of the observed electron cosmic rays from DM annihilation
could come from subhalos, opening up the possibility of a relaxation of recent
stringent constraints from inverse Compton gamma rays originating from the
high-energy leptons.Comment: 8 pages, 13 figures; added referenc
Cosmic rays from trans-relativistic supernovae
We derive constraints that must be satisfied by the sources of ~10^{15} to
~10^{18} eV cosmic rays, under the assumption that the sources are Galactic. We
show that while these constraints are not satisfied by ordinary supernovae
(SNe), which are believed to be the sources of <10^{15} eV cosmic rays, they
may be satisfied by the recently discovered class of trans-relativistic
supernovae (TRSNe), which were observed in association with gamma-ray bursts.
We define TRSNe as SNe that deposit a large fraction, f_R>10^{-2}, of their
kinetic energy in mildly relativistic, \gamma\beta>1, ejecta. The high velocity
ejecta enable particle acceleration to ~10^{18} eV, and the large value of f_R
(compared to f_R~10^{-7} for ordinary SNe) ensures that if TRSNe produce the
observed ~10^{18} eV cosmic ray flux, they do not overproduce the flux at lower
energies. This, combined with the estimated rate and energy production of
TRSNe, imply that Galactic TRSNe may be the sources of cosmic rays with
energies up to ~10^{18}eV .Comment: Accepted to ApJ. Expanded abstract, introduction, discussio
Cosmic ray spectral hardening due to dispersion in the source injection spectra
Recent cosmic ray (CR) experiments discovered that the CR spectra experience
a remarkable hardening for rigidity above several hundred GV. We propose that
this is caused by the superposition of the CR energy spectra of many sources
that have a dispersion in the injection spectral indices. Adopting similar
parameters as those of supernova remnants derived from the Fermi -ray
observations, we can reproduce the observational CR spectra of different
species well. This may be interpreted as evidence to support the supernova
remnant origin of CRs below the knee. We further propose that the same
mechanism may explain the "ankle" of the ultra high energy CR spectrum.Comment: 5 pages, 3 figures and 1 table. Updated with the diffusion
propagation model, accepted by Phys. Rev.
Charge and energy dependence of the residence time of cosmic ray nuclei below 15 GeV/nucleon
The relative abundance of nuclear species measured in cosmic rays at Earth has often been interpreted with the simple leaky box model. For this model to be consistent an essential requirement is that the escape length does not depend on the nuclear species. The discrepancy between escape length values derived from iron secondaries and from the B/C ratio was identified by Garcia-Munoz and his co-workers using a large amount of experimental data. Ormes and Protheroe found a similar trend in the HEAO data although they questioned its significance against uncertainties. They also showed that the change in the B/C ratio values implies a decrease of the residence time of cosmic rays at low energies in conflict with the diffusive convective picture. These conclusions crucially depend on the partial cross section values and their uncertainties. Recently new accurate cross sections of key importance for propagation calculations have been measured. Their statistical uncertainties are often better than 4% and their values significantly different from those previously accepted. Here, these new cross sections are used to compare the observed B/C+O and (Sc to Cr)/Fe ratio to those predicted with the simple leaky box model
Source spectral index of heavy cosmic ray nuclei
From the energy spectra of the heavy nuclei observed by the French-Danish experiment on HEAO-3, the source spectra of the mostly primary nuclei (C, O, Ne, Mg, Si, Ca and Fe) in the framework of an energy dependent leaky box model (Engelmann, et al., 1985) were derived. The energy dependence of the escape length was derived from the observed B/C and sub-iron/iron ratios and the presently available cross sections for C and Fe on H nuclei (Koch-Miramond, et al., 1983). A good fit to the source energy spectra of all these nuclei was obtained by a power law in momentum with an exponent gamma = -2.4+0.05 for the energy range 1 to 25GeV/n (Engelmann, et al., 1985). Comparison with data obtained at higher energy suggested a progressive flattening of these spectra. More accurate spectral indices are sought by using better values of the escape length based on the latest cross section measurements (Webber 1984, Soutoul, et al., this conference). The aim is also to extend the analysis to lower energies down to 0.4GeV/n (kinetic energy observed near Earth), using data obtained by other groups. The only nuclei for which a good data base is possessed in a broad range of energies are O and Fe, so the present study is restricted to these two elements
Magnetic field dissipation in neutron star crusts: from magnetars to isolated neutron stars
We study the non--linear evolution of magnetic fields in neutron star crusts
with special attention to the influence of the Hall drift. Our goal is to
understand the conditions for fast dissipation due to the Hall term in the
induction equation. We study the interplay of Ohmic dissipation and Hall drift
in order to find a timescale for the overall crustal field decay. We solve
numerically the Hall induction equation by means of a hybrid method (spectral
in angles but finite differences in the radial coordinate). The microphysical
input consists of the most modern available crustal equation of state,
composition and electrical conductivities. We present the first long term
simulations of the non--linear magnetic field evolution in realistic neutron
star crusts with a stratified electron number density and temperature dependent
conductivity. We show that Hall drift influenced Ohmic dissipation takes place
in neutron star crusts on a timescale of 1 Myr. When the initial magnetic field
has magnetar strength, the fast Hall drift results in an initial rapid
dissipation stage that lasts 10-50 kyr. The interplay of the Hall drift with
the temporal variation and spatial gradient of conductivity tends to favor the
displacement of toroidal fields toward the inner crust, where stable
configurations can last for 1 Myr. We show that the thermally emitting isolated
neutron stars, as the Magnificent Seven, are very likely descendants of neutron
stars born as magnetars.Comment: 14 pages, 10 figure
- …