324 research outputs found

    The blood-brain and the blood-cerebrospinal fluid barriers: function and dysfunction

    Get PDF
    The central nervous system (CNS) is tightly sealed from the changeable milieu of blood by the blood-brain barrier (BBB) and the blood-cerebrospinal fluid (CSF) barrier (BCSFB). While the BBB is considered to be localized at the level of the endothelial cells within CNS microvessels, the BCSFB is established by choroid plexus epithelial cells. The BBB inhibits the free paracellular diffusion of water-soluble molecules by an elaborate network of complex tight junctions (TJs) that interconnects the endothelial cells. Combined with the absence of fenestrae and an extremely low pinocytotic activity, which inhibit transcellular passage of molecules across the barrier, these morphological peculiarities establish the physical permeability barrier of the BBB. In addition, a functional BBB is manifested by a number of permanently active transport mechanisms, specifically expressed by brain capillary endothelial cells that ensure the transport of nutrients into the CNS and exclusion of blood-borne molecules that could be detrimental to the milieu required for neural transmission. Finally, while the endothelial cells constitute the physical and metabolic barrier per se, interactions with adjacent cellular and acellular layers are prerequisites for barrier function. The fully differentiated BBB consists of a complex system comprising the highly specialized endothelial cells and their underlying basement membrane in which a large number of pericytes are embedded, perivascular antigen-presenting cells, and an ensheathment of astrocytic endfeet and associated parenchymal basement membrane. Endothelial cell morphology, biochemistry, and function thus make these brain microvascular endothelial cells unique and distinguishable from all other endothelial cells in the body. Similar to the endothelial barrier, the morphological correlate of the BCSFB is found at the level of unique apical tight junctions between the choroid plexus epithelial cells inhibiting paracellular diffusion of water-soluble molecules across this barrier. Besides its barrier function, choroid plexus epithelial cells have a secretory function and produce the CSF. The barrier and secretory function of the choroid plexus epithelial cells are maintained by the expression of numerous transport systems allowing the directed transport of ions and nutrients into the CSF and the removal of toxic agents out of the CSF. In the event of CNS pathology, barrier characteristics of the blood-CNS barriers are altered, leading to edema formation and recruitment of inflammatory cells into the CNS. In this review we will describe current knowledge on the cellular and molecular basis of the functional and dysfunctional blood-CNS barriers with focus on CNS autoimmune inflammatio

    The circumventricular organs participate in the immunopathogenesis of experimental autoimmune encephalomyelitis

    Get PDF
    BACKGROUND: During inflammatory conditions of the central nervous system (CNS), such as in multiple sclerosis or in its animal model, experimental autoimmune encephalomyelitis (EAE), immune cells migrate from the blood stream into the CNS parenchyma and into the cerebrospinal fluid (CSF) spaces. The endothelial blood-brain barrier (BBB) has been considered the most obvious entry site for circulating immune cells. Recently, the choroid plexus has been considered as an alternative entry site for circulating lymphocytes into the CSF. The choroid plexus, belongs to the circumventricular organs (CVOs) localized in the walls of the ventricles. Other CVOs, which similar to the choroid plexus lack an endothelial BBB, have not been considered as possible entry sites for immune cells into the CNS parenchyma or the CSF. Here we asked, whether CVOs are involved in the recruitment of inflammatory cells into the brain during EAE. METHODS: We performed an extensive immunohistological study on the area postrema (AP), the subfornical organ (SFO), the organum vasculosum of the lamina terminalis (OVLT) and the median eminence (ME) in frozen brain sections from healthy SJL mice and mice suffering from EAE. Expression of cell adhesion molecules, the presence of leukocyte subpopulations and the detection of major histocompatibility complex antigen expression was compared. RESULTS: Similar changes were observed for all four CVOs included in this study. During EAE significantly increased numbers of CD45(+ )leukocytes were detected within the four CVOs investigated, the majority of which stained positive for the macrophage markers F4/80 and Mac-1. The adhesion molecules ICAM-1 and VCAM-1 were upregulated on the fenestrated capillaries within the CVOs. A considerable upregulation of MHC class I throughout the CVOs and positive immunostaining for MHC class II on perivascular cells additionally documented the immune activation of the CVOs during EAE. A significant enrichment of inflammatory infiltrates was observed in close vicinity to the CVOs. CONCLUSION: Our data indicate that the CVOs are a site for the entry of immune cells into the CNS and CSF and consequently are involved in the inflammatory process in the CNS during EAE

    The Role of Chemokines in Leukocyte Recruitment across the Blood-Brain Barrier

    Get PDF
    Migration of autoaggressive T cells across the blood-brain barrier (BBB) is critically involved in the initiation of multiple sclerosis (MS) and its animal model experimental autoimmune encephalomyelitis (EAE). The direct involvement of chemokines in this process was suggested by our recent observation that G-protein-mediated signaling is required to promote adhesion strengthening of encephalitogenic T cells on BBB endothelium in vivo. For chemokines to be involved in this process, they have to be either expressed by BBB endothelial cells themselves or would require a yet unknown transport mechanism from the central nervous system (CNS) parenchyma across the endothelial BBB to the luminal surface of the endothelial cells. To search for chemokines expressed by the endothelial BBB itself, in situ hybridizations and immunohistochemistry were performed and expression of the lymphoid chemokines CCL19 and CCL21 was found in venules surrounded by inflammatory cells. Their expression was paralleled by the presence of their common receptor CCR7 in inflammatory cells in brain and spinal cord sections of mice afflicted with EAE. Encephalitogenic T cells showed surface expression of CCR7 and the alternative receptor for CCL21, CXCR3. They specifically chemotaxed towards both CCL19 or CCL21 in a concentration dependent and pertussis toxin-sensitive manner comparable to naive lymphocytes in vitro. Functional involvement of CCL19 and CCL21 in adhesion strengthening of encephalitogenic T lymphocytes was demonstrated by binding assays on frozen brain sections of mice afflicted with EAE in vitro and preliminary by intravital fluorescence videomicroscopy in spinal cord of healthy mice in vivo. The moderate effect observed suggests additional, potentially unknown chemokines to be involved in lymphocyte recruitment across the endothelial BBB into the immunoprivileged CNS. Such chemokines, receptors as well as unknown molecules were identified at the level of the endothelial BBB by oligonucleotide microarrays, subtractive suppression hybridization (SSH) and proteomics. Besides the upregulation of expected genes and proteins described to be involved in leukocyte recruitment during EAE pathogenesis before, unexpected genes and proteins were identified. The latter included increased Duffy antigen / receptor for chemokines (DARC) expression suggesting its involvement in lymphocyte recruitment during EAE pathogenesis, which was proven as in DARC-deficient mice, disease onset was delayed, while clinical severity was increased. This may be explained by an ambiguous DARC function in EAE pathogenesis. Either endothelial cell expressed DARC "shuttles" chemokines to the luminal surface of the endothelial cells or erythrocyte expressed DARC removes chemokines by its "sink"-like function. This results in either increased or decreased chemokine concentrations accessible to encephalitogenic T lymphoblasts. Their encephalitogenicity was addressed by gene array analysis and SSH of encephalitogenic versus non-encephalitogenic T lymphoblasts identifying 79 differentially expressed genes. Based on the results obtained during this thesis, we would like to suggest the lymphoid chemokines CCL19 and CCL21 to be critically involved in lymphocyte recruitment across the endothelial BBB during EAE pathogenesis, while the chemokine receptor DARC may provide a "shuttle" mechanism for inflammatory chemokines from the CNS parenchyma across the endothelial BBB to the luminal surface of the endothelial cells during EAE. A large number of additional genes and proteins was identified to be differentially expressed in either endothelial cells or T lymphoblasts pointing to new mechanisms involved in leukocyte trafficking across the BBB

    Differentiation of Human Induced Pluripotent Stem Cells to Brain Microvascular Endothelial Cell-Like Cells with a Mature Immune Phenotype.

    Get PDF
    Blood-brain barrier (BBB) dysfunction is a pathological hallmark of many neurodegenerative and neuroinflammatory diseases affecting the central nervous system (CNS). Due to the limited access to disease-related BBB samples, it is still not well understood whether BBB malfunction is causative for disease development or rather a consequence of the neuroinflammatory or neurodegenerative process. Human induced pluripotent stem cells (hiPSCs) therefore provide a novel opportunity to establish in vitro BBB models from healthy donors and patients, and thus to study disease-specific BBB characteristics from individual patients. Several differentiation protocols have been established for deriving brain microvascular endothelial cell (BMEC)-like cells from hiPSCs. Consideration of the specific research question is mandatory for the correct choice of the respective BMEC-differentiation protocol. Here, we describe the extended endothelial cell culture method (EECM), which is optimized to differentiate hiPSCs into BMEC-like cells with a mature immune phenotype, allowing the study of immune cell-BBB interactions. In this protocol, hiPSCs are first differentiated into endothelial progenitor cells (EPCs) by activating Wnt/ÎČ-catenin signaling. The resulting culture, which contains smooth muscle-like cells (SMLCs), is then sequentially passaged to increase the purity of endothelial cells (ECs) and to induce BBB-specific properties. Co-culture of EECM-BMECs with these SMLCs or conditioned medium from SMLCs allows for the reproducible, constitutive, and cytokine-regulated expression of EC adhesion molecules. Importantly, EECM-BMEC-like cells establish barrier properties comparable to primary human BMECs, and due to their expression of all EC adhesion molecules, EECM-BMEC-like cells are different from other hiPSC-derived in vitro BBB models. EECM-BMEC-like cells are thus the model of choice for investigating the potential impact of disease processes at the level of the BBB, with an impact on immune cell interaction in a personalized fashion

    Multiple sclerosis: Immunopathological heterogeneity and its implications

    Get PDF
    Biomarkers; Brain barriers immunotherapy; Multiple sclerosisBiomarcadores; Inmunoterapia de barreras cerebrales; Esclerosis mĂșltipleBiomarcadors; ImmunoterĂ pia de barreres cerebrals; Esclerosi mĂșltipleMS is the most common autoimmune demyelinating disease of the CNS. For the past decades, several immunomodulatory disease-modifying treatments with multiple presumed mechanisms of action have been developed, but MS remains an incurable disease. Whereas high efficacy, at least in early disease, corroborates underlying immunopathophysiology, there is profound heterogeneity in clinical presentation as well as immunophenotypes that may also vary over time. In addition, functional plasticity in the immune system as well as in the inflamed CNS further contributes to disease heterogeneity. In this review, we will highlight immune-pathophysiological and associated clinical heterogeneity that may have an implication for more precise immunomodulatory therapeutic strategies in MS.We thank our lab teams and clinical coworkers for their dedication. We thank people with MS that we have the privilege to counsel for their continuous support. Part of the work cited was funded by the Swiss National Fund (SNF no. 310030_172952) to AC. Open access funding provided by Inselspital Universitatsspital Ber

    Novel insights into the development and maintenance of the blood-brain barrier

    Get PDF
    The blood-brain barrier (BBB) is essential for maintaining homeostasis within the central nervous system (CNS) and is a prerequisite for proper neuronal function. The BBB is localized to microvascular endothelial cells that strictly control the passage of metabolites into and out of the CNS. Complex and continuous tight junctions and lack of fenestrae combined with low pinocytotic activity make the BBB endothelium a tight barrier for water soluble moleucles. In combination with its expression of specific enzymes and transport molecules, the BBB endothelium is unique and distinguishable from all other endothelial cells in the body. During embryonic development, the CNS is vascularized by angiogenic sprouting from vascular networks originating outside of the CNS in a precise spatio-temporal manner. The particular barrier characteristics of BBB endothelial cells are induced during CNS angiogenesis by cross-talk with cellular and acellular elements within the developing CNS. In this review, we summarize the currently known cellular and molecular mechanisms mediating brain angiogenesis and introduce more recently discovered CNS-specific pathways (Wnt/ÎČ−catenin, Norrin/Frizzled4 and hedgehog) and molecules (GPR124) that are crucial in BBB differentiation and maturation. Finally, based on observations that BBB dysfunction is associated with many human diseases such as multiple sclerosis, stroke and brain tumors, we discuss recent insights into the molecular mechanisms involved in maintaining barrier characteristics in the mature BBB endothelium

    How Does the Immune System Enter the Brain?

    Get PDF
    Multiple Sclerosis (MS) is considered the most frequent inflammatory demyelinating disease of the central nervous system (CNS). It occurs with a variable prevalence across the world. A rich armamentarium of disease modifying therapies selectively targeting specific actions of the immune system is available for the treatment of MS. Understanding how and where immune cells are primed, how they access the CNS in MS and how immunomodulatory treatments affect neuroinflammation requires a proper knowledge on the mechanisms regulating immune cell trafficking and the special anatomy of the CNS. The brain barriers divide the CNS into different compartments that differ with respect to their accessibility to cells of the innate and adaptive immune system. In steady state, the blood-brain barrier (BBB) limits immune cell trafficking to activated T cells, which can reach the cerebrospinal fluid (CSF) filled compartments to ensure CNS immune surveillance. In MS immune cells breach a second barrier, the glia limitans to reach the CNS parenchyma. Here we will summarize the role of the endothelial, epithelial and glial brain barriers in regulating immune cell entry into the CNS and which immunomodulatory treatments for MS target the brain barriers. Finally, we will explore current knowledge on genetic and environmental factors that may influence immune cell entry into the CNS during neuroinflammation in Africa

    Molecular anatomy and functions of the choroidal blood-cerebrospinal fluid barrier in health and disease.

    Get PDF
    The barrier between the blood and the ventricular cerebrospinal fluid (CSF) is located at the choroid plexuses. At the interface between two circulating fluids, these richly vascularized veil-like structures display a peculiar morphology explained by their developmental origin, and fulfill several functions essential for CNS homeostasis. They form a neuroprotective barrier preventing the accumulation of noxious compounds into the CSF and brain, and secrete CSF, which participates in the maintenance of a stable CNS internal environment. The CSF circulation plays an important role in volume transmission within the developing and adult brain, and CSF compartments are key to the immune surveillance of the CNS. In these contexts, the choroid plexuses are an important source of biologically active molecules involved in brain development, stem cell proliferation and differentiation, and brain repair. By sensing both physiological changes in brain homeostasis and peripheral or central insults such as inflammation, they also act as sentinels for the CNS. Finally, their role in the control of immune cell traffic between the blood and the CSF confers on the choroid plexuses a function in neuroimmune regulation and implicates them in neuroinflammation. The choroid plexuses, therefore, deserve more attention while investigating the pathophysiology of CNS diseases and related comorbidities
    • 

    corecore