3 research outputs found

    Modelling and Simulation of Smart Grids using Dymola/Modelica

    Get PDF
    Smart grids have been proposed as a way to increase grid robustness and reduce consumption peaks and at the same time decrease electricity costs for the end users. This thesis aims to develop generic models for smart grids focusing on smart houses which are used to test if it is possible to reduce consumption peaks, decrease electricity cost and at the same time increase grid stability. Models have been developed in Dymola using the Modelica language and a controller program has been developed using C++. Based on simulations of the models it is concluded that the consumption peaks in the grid can be decreased while at the same time grid robustness in terms of withstanding short power outages is improved. Furthermore this effort reduced electricity cost for the end users as well

    UtvÀrderingsmetod för utbyggnad av elvÀgsstrÀckor i Sverige : en delanalys i Genomförbarhetsstudie elvÀg E22

    No full text
    Evaluation method for development of electric road system network in Sweden – an analysis within the Feasibility study E22-project This report is the result of the work package on Evaluation method within the project “Feasibility study of the electric road system pilot E22”. The original objective with the work package was to describe an evaluation method for the introduction of electric road systems. Important objectives for electric road system (ERS) projects and parameters for measuring goal achievement and, customer satisfaction was to be defined. The results are based on documentation from comparable infrastructure projects, workshops and interviews with stakeholders and project partners. The method was kept as originally outlined but instead of identifying objectives, which can depend on the actor that initiates/is the owner of the ERS, we have taken the existing framework and the processes for evaluation of large-scale infrastructure projects that is already established as the starting point. The existing processes and methods are described at the Swedish Transport Administrations websites for industry. The evaluation process is done according to established calculation and evaluation tools with corresponding manuals. The project has focused on identifying parameters that are unique to ERS or of specific importance for the outcome of an ERS project. Consideration was taken to the fact that ERS is a new technology and that there are knowledge gaps especially for the implementation and operational phases that needs to be filled. For these phases extra evaluations could give important feedback during the development of a larger ERS network. The study has not assumed a specific technology for implementation or for the transmission of electricity to the vehicles, i.e., neither overhead line nor road based. The results from this work package shows that there is an existing framework for evaluations that can be used, and many important parameters are already included in this framework. Some additions to the framework®s methods and tools of parameters specific for ERS needs to be done. Examples of parameters for which new evaluation tools need to be developed and included in the existing framework include: ‱ profitability from a business perspective and in comparison, to other alternatives, ‱ climate impact from a life cycle perspective that also includes the vehicle and fuels/energy used for propulsion and ‱ the optimal level of the user fee from a socioeconomic perspective. How often follow-ups are made also needs to be adjusted in the existing framework. Follow-ups needs to be done more frequently and more parameters needs to be evaluated. There is also a need for a learning process and knowledge sharing framework to enable a fast enrollment of electric road systems in a cost-efficient way. Additional evaluations are also required for ERS since it is new technology that has not been implemented on a large scale. Examples of such parameters include operational and maintenance for ERS, accidents, noise, emissions of particulates, impact on plant and animal life, electromagnetic fields and electromagnetic compatibility. As a next step to develop the evaluation methods for the build-out of ERS we recommend to using the first permanent stretch being built between Örebro and Hallsberg to develop a learning process framework and a process for knowledge sharing of planning, procurement and building of ERS. At this first permanent stretch, parameters with uncertainty should also be evaluated. A direct continuation of this project would also be to connect the results from the work-packages on evaluation and upscaling to quantify uncertain parameters to better evaluate their real importance

    S3 – Shared Shuttle Services : Fas 1 (2017-05-03 – 2019-12-31)

    No full text
    S3-projektet handlar om att testa delade, elektrifierade och automatiserade skyttelbussar för att demonstrera hur dessa nya transportlösningar kan stimulera och stödja en förtĂ€tning av staden.Inom projektet har stadsutvecklare, nĂ€ringsliv, akademi och offentlig sektor samlats för att gemensamt utforma och prova nya mobilitetskoncept för den första- och sista kilometern av resan. Rapporten beskriver den första fasen av projektet, frĂ„n maj 2017 till och med december 2019, dĂ€r skyttelbussarna testats vid Lindholmen Science Park, Chalmers campus Johanneberg samt i HĂ€rryda centrum. För att stĂ€rka projektet har arbete Ă€ven utförts kring kompletterande mobilitetstjĂ€nster, öppen innovation, utvĂ€rdering, affĂ€rsmodell, fĂ€rdplan, molninfrastruktur samt event och kommunikation kopplat till initiativet. Efter utmanande processer av projektering och tillstĂ„ndsansökan lyckades testerna genomföras pĂ„ vad som av teknik- och fordonsleverantörerna ansĂ„gs vara den mest utmanande rutten i vĂ€rlden som dessa fordon hittills kört pĂ„. Samtidigt Ă€r mognadsgraden för teknik och helhetstjĂ€nst fortfarande relativt lĂ„g, och kombinerat med givna sĂ€kerhetsprioriteringar lĂ€mnas en del att önska vad gĂ€ller grundlĂ€ggande parametrar som hastighet och komfort. Dessutom innebĂ€r nuvarande tillstĂ„ndskrav pĂ„ sĂ€kerhetsoperatör ombord pĂ„ fordonen begrĂ€nsningar vad gĂ€ller till exempel hĂ„llbara affĂ€rsmodeller och möjligheten att studera vissa anvĂ€ndarförhĂ„llanden. Tack till medverkande parter och finansiĂ€rer med ett sĂ€rskilt tack till Vinnova, Drive Sweden och Lindholmen Science Park som gjort detta projekt möjligt. Tack till Transportstyrelsen, Trafikkontoret, Polisen och Chalmersfastigheter för snabba beslutsvĂ€gar och till Atrium Ljungberg för lĂ„net av garageplats. Slutligen önskar projektet rikta ett stort tack till samtliga som varit med och testat skyttlarna.Deltagande parter har varit: Chalmers, Chalmers fastigheter, Ericsson, Förvaltnings AB Framtiden, Göteborgs Stads Parkerings AB, Göteborgs Stad Stadsbyggnadskontoret, Göteborg stad Trafikkontoret, Holo (Tidigare Autonomous Mobility), HĂ€rryda kommun, Karlastaden Utvecklings AB, Sunfleet, VĂ€sttrafik, Älvstrandens Utvecklings AB och RISE Mobility &amp; Systems (tidigare Viktoria).</p
    corecore