15 research outputs found
More effective boilerplate removal – the GoldMiner algorithm
Abstract—The ever-increasing web is an important source for building large-scale corpora. However, dynamically generated web pages often contain much irrelevant and duplicated text, which impairs the quality of the corpus. To ensure the high quality of web-based corpora, a good boilerplate removal algorithm is needed to extract only the relevant content from web pages. In this article, we present an automatic text extraction procedure, GoldMiner, which by enhancing a previously published boilerplate removal algorithm, minimizes the occurrence of irrelevant duplicated content in corpora, and keeps the text more coherent than previous tools. The algorithm exploits similarities in the HTML structure of pages coming from the same domain. A new evaluation document set (CleanPortalEval) is also presented, which can demonstrate the power of boilerplate removal algorithms for web portal pages. Index Terms—corpus building, boilerplate removal, the web as corpus I. THE TASK When constructing corpora from web content, the extraction of relevant text from dynamically generated HTML pages is not a trivial task due to the great amount of irrelevant repeated text that needs to be identified and removed so that it does not compromise the quality of the corpus. This task, called boilerplate removal in the literature, consists of categorizing HTML content as valuable vs. irrelevant, filtering out menus, headers and footers, advertisements, and structure repeated on many pages. In this paper, we present a boilerplate removal algorithm that removes irrelevant content from crawled content more effectively than previous tools. The structure of our paper is as follows. First, we present some tools that we used as baselines when evaluating the performance of our system. The algorithm implemented in one of these tools, jusText, is also used as part of our enhanced boilerplate removal algorithm. This is followed by the presentation of the enhanced system, called GoldMiner, and the evaluation of the results
NyelvtechnolĂłgiai algoritmusok korpuszok automatikus Ă©pĂtĂ©sĂ©hez Ă©s pontosabb feldolgozásukhoz
Egy hatékonyabb webes sablonszűrő algoritmus : avagy miként lehet a cumisüveg potenciális veszélyforrás Obamára nézve
A folyamatosan növekvĹ‘ web1 tartalmábĂłl hatĂ©konyan lehet nagymĂ©retű korpuszt Ă©pĂteni. Azonban a dinamikusan generált weblapok gyakran sok irreleváns Ă©s ismĂ©tlĹ‘dĹ‘ szöveget tartalmaznak, amelyek egyes sablonos szövegrĂ©szeket, kifejezĂ©seket felĂĽlreprezentálva rontják a korpusz minĹ‘sĂ©gĂ©t. Ebben a cikkben olyan automatikus szövegkinyerĹ‘ eljárást mutatunk be, amely a korábbi mĂłdszereknĂ©l hatĂ©konyabban minimalizálja az irreleváns ismĂ©tlĹ‘dĹ‘ rĂ©szek elĹ‘fordulását a webrĹ‘l letöltött korpuszokban