44 research outputs found
Mechanisms of disturbed emotion processing and social interaction in borderline personality disorder: state of knowledge and research agenda of the German Clinical Research Unit
The last two decades have seen a strong rise in empirical research in the mechanisms of emotion dysregulation in borderline personality disorder. Major findings comprise structural as well as functional alterations of brain regions involved in emotion processing, such as amygdala, insula, and prefrontal regions. In addition, more specific mechanisms of disturbed emotion regulation, e.g. related to pain and dissociation, have been identified. Most recently, social interaction problems and their underlying neurobiological mechanisms, e.g. disturbed trust or hypersensitivity to social rejection, have become a major focus of BPD research. This article covers the current state of knowledge and related relevant research goals. The first part presents a review of the literature. The second part delineates important open questions to be addressed in future studies. The third part describes the research agenda for a large German center grant focusing on mechanisms of emotion dysregulation in BPD
Self-reported impulsivity in women with borderline personality disorder: the role of childhood maltreatment severity and emotion regulation difficulties
Background: Childhood maltreatment, such as severe emotional, physical, and sexual abuse and neglect, has been linked to impulse control problems and dysfunctional emotional coping. In borderline personality disorder (BPD), a history of childhood maltreatment may worsen difficulties in emotion regulation, which may in turn give rise to impulsive behaviours. The aim of this self-report study was to investigate associations between childhood maltreatment severity, emotion regulation difficulties, and impulsivity in women with BPD compared to healthy and clinical controls.
Methods: Sixty-one female patients with BPD, 57 clinical controls (CC, women with Attention Deficit Hyperactivity Disorder and/or Substance Use Disorder, without BPD), and 60 female healthy controls (HC) completed self-report scales on childhood trauma (Childhood Trauma Questionnaire, CTQ), difficulties in emotion regulation (Difficulties in Emotion Regulation Scale, DERS), and impulsivity (UPPS Impulsive Behaviour Scale). A conditional process analysis was performed to investigate whether emotion dysregulation statistically mediated the effect of childhood maltreatment severity on impulsivity depending on group (BPD vs. CC vs. HC).
Results: Childhood maltreatment, particularly emotional maltreatment, was positively associated with impulsivity and emotion regulation difficulties across all groups. Difficulties in emotion regulation statistically mediated the effect of childhood maltreatment on impulsivity in BPD, but not in the other groups.
Conclusion: In the context of current conceptualizations of BPD and previous research, findings suggest that problems with emotion regulation may be related to a history of childhood maltreatment, which may in turn enhance impulsivity. Targeting emotion dysregulation in psychotherapy and discussing it in relation to childhood maltreatment can help decreasing impulsive behaviors in individuals with BPD. Given the correlational design of our study which does not allow causal conclusions, future studies have to employ prospective, experimental designs and include larger sample sizes to corroborate associations between childhood maltreatment, emotion dysregulation, and impulsivity
Frequency drift in MR spectroscopy at 3T
Purpose: Heating of gradient coils and passive shim components is a common cause of instability in the B-0 field, especially when gradient intensive sequences are used. The aim of the study was to set a benchmark for typical drift encountered during MR spectroscopy (MRS) to assess the need for real-time field-frequency locking on MRI scanners by comparing field drift data from a large number of sites.Method: A standardized protocol was developed for 80 participating sites using 99 3T MR scanners from 3 major vendors. Phantom water signals were acquired before and after an EPI sequence. The protocol consisted of: minimal preparatory imaging; a short pre-fMRI PRESS; a ten-minute fMRI acquisition; and a long post-fMRI PRESS acquisition. Both pre- and post-fMRI PRESS were non-water suppressed. Real-time frequency stabilization/adjustment was switched off when appropriate. Sixty scanners repeated the protocol for a second dataset. In addition, a three-hour post-fMRI MRS acquisition was performed at one site to observe change of gradient temperature and drift rate. Spectral analysis was performed using MATLAB. Frequency drift in pre-fMRI PRESS data were compared with the first 5:20 minutes and the full 30:00 minutes of data after fMRI. Median (interquartile range) drifts were measured and showed in violin plot. Paired t-tests were performed to compare frequency drift pre- and post-fMRI. A simulated in vivo spectrum was generated using FID-A to visualize the effect of the observed frequency drifts. The simulated spectrum was convolved with the frequency trace for the most extreme cases. Impacts of frequency drifts on NAA and GABA were also simulated as a function of linear drift. Data from the repeated protocol were compared with the corresponding first dataset using Pearson's and intraclass correlation coefficients (ICC).Results: Of the data collected from 99 scanners, 4 were excluded due to various reasons. Thus, data from 95 scanners were ultimately analyzed. For the first 5:20 min (64 transients), median (interquartile range) drift was 0.44 (1.29) Hz before fMRI and 0.83 (1.29) Hz after. This increased to 3.15 (4.02) Hz for the full 30 min (360 transients) run. Average drift rates were 0.29 Hz/min before fMRI and 0.43 Hz/min after. Paired t-tests indicated that drift increased after fMRI, as expected (p < 0.05). Simulated spectra convolved with the frequency drift showed that the intensity of the NAA singlet was reduced by up to 26%, 44 % and 18% for GE, Philips and Siemens scanners after fMRI, respectively. ICCs indicated good agreement between datasets acquired on separate days. The single site long acquisition showed drift rate was reduced to 0.03 Hz/min approximately three hours after fMRI.Discussion: This study analyzed frequency drift data from 95 3T MRI scanners. Median levels of drift were relatively low (5-min average under 1 Hz), but the most extreme cases suffered from higher levels of drift. The extent of drift varied across scanners which both linear and nonlinear drifts were observed.</p
The Exercising Brain: Changes in Functional Connectivity Induced by an Integrated Multimodal Cognitive and Whole-Body Coordination Training
This study investigated the impact of “life kinetik” training on brain plasticity in terms of an increased functional connectivity during resting-state functional magnetic resonance imaging (rs-fMRI). The training is an integrated multimodal training that combines motor and cognitive aspects and challenges the brain by introducing new and unfamiliar coordinative tasks. Twenty-one subjects completed at least 11 one-hour-per-week “life kinetik” training sessions in 13 weeks as well as before and after rs-fMRI scans. Additionally, 11 control subjects with 2 rs-fMRI scans were included. The CONN toolbox was used to conduct several seed-to-voxel analyses. We searched for functional connectivity increases between brain regions expected to be involved in the exercises. Connections to brain regions representing parts of the default mode network, such as medial frontal cortex and posterior cingulate cortex, did not change. Significant connectivity alterations occurred between the visual cortex and parts of the superior parietal area (BA7). Premotor area and cingulate gyrus were also affected. We can conclude that the constant challenge of unfamiliar combinations of coordination tasks, combined with visual perception and working memory demands, seems to induce brain plasticity expressed in enhanced connectivity strength of brain regions due to coactivation
Real-Time direct volume rendering in functional magnetic resonance imaging
Direct volume rendering is a visualization method that allows display of all information hidden in three-dimensional data sets of, for example, computed tomography or magnetic resonance imaging (MRI). In contrast to commonly used surface rendering methods, these algorithms need no preprocessing but suffer from a high computational complexity. A real-time rendering system, VIRIM (Vitec: Visualization Technology GmbH, Mannheim, Germany), cuts down rendering times of minutes on normal workstations to an interactive rate of 1 second or less. The immediate visual feedback allows interactive steering of the visualization process to achieve insight into the internal three-dimensional structure of objects. Additional information is obtained by using an interactive gray-value segmentation tool that both allows segmentation of the data set according to bone, tissue, and liquor and display of multifunctional data sets (e.g., functional MRI [fMRI] data sets). Thus, real-time direct volume rendering allows segmentation and volume data processing of functional and anatomical MR data sets simultaneously. As this method can be integrated in the clinical routine, it is of great importance for real-time motion artifact detection and the interpretation of fMRI data acquired during cognitive experiments with normal subjects and psychiatric patients. Because of the free programmability of VIRIM, more complex matching procedures are currently being investigated for future implementation
New insights into the effects of type and timing of childhood maltreatment on brain morphometry
Abstract Childhood maltreatment (CM) is known to influence brain development. To obtain a better understanding of related brain alterations, recent research has focused on the influence of the type and timing of CM. We aimed to investigate the association between type and timing of CM and local brain volume. Anatomical magnetic resonance images were collected from 93 participants (79 female/14 male) with a history of CM. CM history was assessed with the German Interview Version of the “Maltreatment and Abuse Chronology of Exposure” scale, “KERF-40 + ”. Random forest regressions were performed to assess the impact of CM characteristics on the volume of amygdala, hippocampus and anterior cingulate cortex (ACC). The volume of the left ACC was predicted by neglect at age 3 and 4 and abuse at age 16 in a model including both type and timing of CM. For the right ACC, overall CM severity and duration had the greatest impact on volumetric alterations. Our data point to an influence of CM timing on left ACC volume, which was most pronounced in early childhood and in adolescence. We were not able to replicate previously reported effects of maltreatment type and timing on amygdala and hippocampal volume
Interactive tool to create adjustable anatomical atlases for mouse brain imaging
Objective!#!Brain atlases are important research tools enabling researchers to focus their investigations on specific anatomically defined brain regions and are used in many MRI applications, e.g. in fMRI, morphometry, whole brain spectroscopy, et cetera. Despite their extensive use and numerous versions they usually consist of predefined rigid brain regions with a given level of detail often degrading them to a non-ideal tool in special research topics.!##!Result!#!To overcome this intrinsic weakness we present a graphical user interface application which allows researchers to easily create mouse brain atlases with an adjustable user-defined level of detail and coverage to match specific research questions
Affective neural signatures do not distinguish women with emotion dysregulation from healthy controls: A mega-analysis across three task-based fMRI studies
Pathophysiological models are urgently needed for personalized treatments of mental disorders. However, most potential neural markers for psychopathology are limited by low interpretability, prohibiting reverse inference from brain measures to clinical symptoms and traits. Neural signatures—i.e. multivariate brain-patterns trained to be both sensitive and specific to a construct of interest—might alleviate this problem, but are rarely applied to mental disorders. We tested whether previously developed neural signatures for negative affect and discrete emotions distinguish between healthy individuals and those with mental disorders characterized by emotion dysregulation, i.e. Borderline Personality Disorder (BPD) and complex Post-traumatic Stress Disorder (cPTSD). In three different fMRI studies, a total sample of 192 women (49 BPD, 62 cPTSD, 81 healthy controls) were shown pictures of scenes with negative or neutral content. Based on pathophysiological models, we hypothesized higher negative and lower positive reactivity of neural emotion signatures in participants with emotion dysregulation. The expression of neural signatures differed strongly between neutral and negative pictures (average Cohen's d = 1.17). Nevertheless, a mega-analysis on individual participant data showed no differences in the reactivity of neural signatures between participants with and without emotion dysregulation. Confidence intervals ruled out even small effect sizes in the hypothesized direction and were further supported by Bayes factors. Overall, these results support the validity of neural signatures for emotional states during fMRI tasks, but raise important questions concerning their link to individual differences in emotion dysregulation