23 research outputs found
Human p8 Is a HMG-I/Y-like Protein with DNA Binding Activity Enhanced by Phosphorylation
We have studied the biochemical features, the conformational preferences in solution, and the DNA binding properties of human p8 (hp8), a nucleoprotein whose expression is affected during acute pancreatitis. Biochemical studies show that hp8 has properties of the high mobility group proteins, HMG-I/Y. Structural studies have been carried out by using circular dichroism (near- and far-ultraviolet), Fourier transform infrared, and NMR spectroscopies. All the biophysical probes indicate that hp8 is monomeric (up to 1 mM concentration) and partially unfolded in solution. The protein seems to bind DNA weakly, as shown by electrophoretic gel shift studies. On the other hand, hp8 is a substrate for protein kinase A (PKA). The phosphorylated hp8 (PKAhp8) has a higher content of secondary structure than the nonphosphorylated protein, as concluded by Fourier transform infrared studies. PKAhp8 binds DNA strongly, as shown by the changes in circular dichroism spectra, and gel shift analysis. Thus, although there is not a high sequence homology with HMG-I/Y proteins, hp8 can be considered as a HMG-I/Y-like protein.Fil:Mallo, G.V. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Mizyrycki, C. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Giono, L. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Cánepa, E. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Moreno, S. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina
Design and measurement of reconfigurable millileter wave reflectarray cells with nematic liquid crystal
Numerical simulations are used to study the electromagnetic scattering from phase agile microstrip reflectarray cells which exploit the voltage controlled dielectric anisotropy property of nematic state liquid crystals (LCs). In the computer model two arrays of equal size elements constructed on a 15 mum thick tuneable LC layer were designed to operate at center frequencies of 102 GHz and 130 GHz. Micromachining processes based on the metallization of quartz/silicon wafers and an industry compatible LCD packaging technique were employed to fabricate the grounded periodic structures. The loss and the phase of the reflected signals were measured using a quasi-optical test bench with the reflectarray inserted at the beam waist of the imaged Gaussian beam, thus eliminating some of the major problems associated with traditional free-space characterization at these frequencies. By applying a low frequency AC bias voltage of 10 V, a 165deg phase shift with a loss 4.5-6.4 dB at 102 GHz and 130deg phase shift with a loss variation between 4.3-7 dB at 130 GHz was obtained. The experimental results are shown to be in close agreement with the computer model
The LSD1 inhibitor iadademstat (ORY-1001) targets SOX2-driven breast cancer stem cells: A potential epigenetic therapy in luminal-B and HER2-positive breast cancer subtypes
SOX2 is a core pluripotency-associated transcription factor causally related to cancer initiation, aggressiveness, and drug resistance by driving the self-renewal and seeding capacity of cancer stem cells (CSC). Here, we tested the ability of the clinically proven inhibitor of the lysine-specific demethylase 1 (LSD1/KDM1A) iadademstat (ORY-100) to target SOX2-driven CSC in breast cancer. Iadademstat blocked CSC-driven mammosphere formation in breast cancer cell lines that are dependent on SOX2 expression to maintain their CSC phenotype. Iadademstat prevented the activation of an LSD1-targeted stemness-specific SOX2 enhancer in CSC-enriched 3-dimensional spheroids. Using high-throughput transcriptional data available from the METABRIC dataset, high expression of SOX2 was significantly more common in luminal-B and HER2-enriched subtypes according to PAM50 classifier and in IntClust1 (high proliferating luminal-B) and IntClust 5 (luminal-B and HER2-amplified) according to integrative clustering. Iadademstat significantly reduced mammospheres formation by CSC-like cells from a multidrug-resistant luminal-B breast cancer patient-derived xenograft but not of those from a treatment-naïve luminal-A patient. Iadademstat reduced the expression of SOX2 in luminal-B but not in luminal-A mammospheres, likely indicating a selective targeting of SOX2-driven CSC. The therapeutic relevance of targeting SOX2-driven breast CSC suggests the potential clinical use of iadademstat as an epigenetic therapy in luminal-B and HER2-positive subtypes. © 2020 Cuyàs et al