38 research outputs found

    Deletion of Murine SMN Exon 7 Directed to Skeletal Muscle Leads to Severe Muscular Dystrophy

    Get PDF
    Spinal muscular atrophy (SMA) is characterized by degeneration of motor neurons of the spinal cord associated with muscle paralysis and caused by mutations of the survival motor neuron gene (SMN). To determine whether SMN gene defect in skeletal muscle might have a role in SMA pathogenesis, deletion of murine SMN exon 7, the most frequent mutation found in SMA, has been restricted to skeletal muscle by using the Cre-loxP system. Mutant mice display ongoing muscle necrosis with a dystrophic phenotype leading to muscle paralysis and death. The dystrophic phenotype is associated with elevated levels of creatine kinase activity, Evans blue dye uptake into muscle fibers, reduced amount of dystrophin and upregulation of utrophin expression suggesting a destabilization of the sarcolemma components. The mutant mice will be a valuable model for elucidating the underlying mechanism. Moreover, our results suggest a primary involvement of skeletal muscle in human SMA, which may contribute to motor defect in addition to muscle denervation caused by the motor neuron degeneration. These data may have important implications for the development of therapeutic strategies in SMA

    Skeletal Muscle Biopsy Analysis in Reducing Body Myopathy and Other Fhl1-related Disorders

    Get PDF
    FHL1 mutations have been associated with various disorders that include reducing body myopathy (RBM), Emery-Dreifuss-like muscular dystrophy, isolated hypertrophic cardiomyopathy, and some overlapping conditions. We report a detailed histochemical, immunohistochemical, electron microscopic, and immunoelectron microscopic analyses of muscle biopsies from 18 patients carrying mutations in FHL1: 14 RBM patients (Group 1), 3 Emery-Dreifuss muscular dystrophy patients (Group 2), and 1 patient with hypertrophic cardiomyopathy and muscular hypertrophy (Group 2). Group 1 muscle biopsies consistently showed RBs associated with cytoplasmic bodies. The RBs showed prominent FHL1 immunoreactivity whereas desmin, alpha B-crystallin, and myotilin immunoreactivity surrounded RBs. By electron microscopy, RBs were composed of electron-dense tubulofilamentous material that seemed to spread progressively between the myofibrils and around myonuclei. By immunoelectron microscopy, FHL1 protein was found exclusively inside RBs. Group 2 biopsies showed mild dystrophic abnormalities without RBs; only minor nonspecific myofibrillar abnormalities were observed under electron microscopy. Molecular analysis revealed missense mutations in the second FHL1 LIM domain in Group 1 patients and ins/del or missense mutations within the fourth FHL1 LIM domain in Group 2 patients. Our findings expand the morphologic features of RBM, clearly demonstrate the localization of FHL1 in RBs, and further illustrate major morphologic differences among different FHL1-related myopathies

    Severe ACTA1-related nemaline myopathy: intranuclear rods, cytoplasmic bodies, and enlarged perinuclear space as characteristic pathological features on muscle biopsies.

    Full text link
    peer reviewedNemaline myopathy (NM) is a muscle disorder with broad clinical and genetic heterogeneity. The clinical presentation of affected individuals ranges from severe perinatal muscle weakness to milder childhood-onset forms, and the disease course and prognosis depends on the gene and mutation type. To date, 14 causative genes have been identified, and ACTA1 accounts for more than half of the severe NM cases. ACTA1 encodes α-actin, one of the principal components of the contractile units in skeletal muscle. We established a homogenous cohort of ten unreported families with severe NM, and we provide clinical, genetic, histological, and ultrastructural data. The patients manifested antenatal or neonatal muscle weakness requiring permanent respiratory assistance, and most deceased within the first months of life. DNA sequencing identified known or novel ACTA1 mutations in all. Morphological analyses of the muscle biopsy specimens showed characteristic features of NM histopathology including cytoplasmic and intranuclear rods, cytoplasmic bodies, and major myofibrillar disorganization. We also detected structural anomalies of the perinuclear space, emphasizing a physiological contribution of skeletal muscle α-actin to nuclear shape. In-depth investigations of the nuclei confirmed an abnormal localization of lamin A/C, Nesprin-1, and Nesprin-2, forming the main constituents of the nuclear lamina and the LINC complex and ensuring nuclear envelope integrity. To validate the relevance of our findings, we examined muscle samples from three previously reported ACTA1 cases, and we identified the same set of structural aberrations. Moreover, we measured an increased expression of cardiac α-actin in the muscle samples from the patients with longer lifespan, indicating a potential compensatory effect. Overall, this study expands the genetic and morphological spectrum of severe ACTA1-related nemaline myopathy, improves molecular diagnosis, highlights the enlargement of the perinuclear space as an ultrastructural hallmark, and indicates a potential genotype/phenotype correlation

    Mutations in GFPT1-related congenital myasthenic syndromes are associated with synaptic morphological defects and underlie a tubular aggregates myopathy with synaptopathy

    No full text
    International audienceMutations in GFPT1 (glutamine-fructose-6-phosphate transaminase 1), a gene encoding an enzyme involved in glycosylation of ubiquitous proteins, cause a limb-girdle congenital myasthenic syndrome (LG-CMS) with tubular aggregates (TAs) characterized predominantly by affection of the proximal skeletal muscles and presence of highly organized and remodeled sarcoplasmic tubules in patients’ muscle biopsies. GFPT1 is the first and rate-limiting enzyme of the hexosamine biosynthetic pathway (HBP) involved in ubiquitous glycosylation processes (Senderek J. et al., 2011). Since 2011, a total of 52 patients with GFPT1 mutations have been clinically reported (Guergueltcheva V. et al., 2012; Senderek et al., 2011;Selcen D. et al., 2013; Huh S-Y. et al., 2012). In this study, we report the retrospective clinical description and the molecular investigations of 11 individuals from 9 unrelated families with LG-CMS linked to recessively-inherited mutations in GFPT1.Interestingly, GFPT1 is expressed in various tissues, including skeletal muscle and motor nerve, raising the intriguing question of why mutations in such a ubiquitous gene would specifically lead to synaptic and muscular disorganization.In this study, we report here the first long-term clinical follow-up of 11 French individuals suffering from LG-CMS with TAs due to GFPT1 mutations, of which 9 are new. Our retrospective clinical evaluation stresses an evolution toward a myopathic weakness that occurs concomitantly to ineffectiveness of usual CMS treatments. Analysis of neuromuscular biopsies from 3 unrelated individuals demonstrates that the maintenance of neuromuscular junctions (NMJs) is dramatically impaired with loss of post-synaptic junctional folds and evidence of denervation-reinnervation processes affecting the 3 main NMJ components. Moreover, molecular analyses of the human muscle biopsies confirm glycosylation defects of proteins with reduced O-glycosylation and show reduced sialylation of transmembrane proteins in extrajunctional area. Altogether, these results pave the way for understanding the etiology of this rare neuromuscular disorder that may be considered as a “tubular aggregates myopathy with synaptopathy

    A Heterozygous Mutation in the Filamin C Gene Causes an Unusual Nemaline Myopathy With Ring Fibers

    No full text
    Autosomal dominant pathogenic variants in the filamin C gene (FLNC) have been associated with myofibrillar myopathies, distal myopathies, and isolated cardiomyopathies. Mutations in different functional domains of FLNC can cause various clinical phenotypes. A novel heterozygous missense variant c.608G>A, p.(Cys203Tyr) in the actin binding domain of FLCN was found to cause an upper limb distal myopathy (MIM #614065). The muscle MRI findings are similar to those observed in FLNC-myofibrillar myopathy (MIM #609524). However, the muscle biopsy revealed >20% of muscle fibers with nemaline bodies, in addition to numerous ring fibers and a predominance of type 1 fibers. Overall, this case shows some unique and rare aspects of FLNC-myopathy constituting a new morphologic phenotype of FLNC-related myopathies

    De novo RYR1 heterozygous mutation (I4898T) causing lethal core-rod myopathy in twins

    No full text
    "Core-rod myopathy" is a rare congenital myopathy characterized by the presence of "cores" and "rods" in distinct locations in the same or different muscle fibres. This association is linked currently to mutations in RYR1, NEB and ACTA1 genes. We report identical twins who presented with polyhydramnios and loss of fetal motility during pregnancy; hypotonia, arthrogryposis and swallowing impairment at birth; need of immediate respiratory support and death at 27 and 50 days of life. Muscle biopsies, performed at 27 days of life in twin 1 and at 49 days in twin 2, showed the presence of separate cores and rods in the muscle fibres, both at light and electron microscopy. The molecular analysis showed a heterozygous de novo mutation (Ile4898Thr) of the RYR1 gene. The molecular study of ACTA1, TMP2 and TMP3 genes did not show abnormalities. This is the first report of a lethal form of congenital "core-rod myopathy". The mutation Ile4898Thr has been previously described in central core disease but not in core-rod myopathy. The report enlarges the phenotypic spectrum of "core-rod myopathy" and highlights the morphological variability associated to special RYR1 mutations.status: publishe
    corecore