29 research outputs found

    Wrinkled few-layer graphene as highly efficient load bearer

    Full text link
    Multilayered graphitic materials are not suitable as load-bearers due to their inherent weak interlayer bonding (for example, graphite is a solid lubricant in certain applications). This situation is largely improved when two-dimensional (2-D) materials such as a monolayer (SLG) graphene are employed. The downside in these cases is the presence of thermally or mechanically induced wrinkles which are ubiquitous in 2-D materials. Here we set out to examine the effect of extensive large wavelength/ amplitude wrinkling on the stress transfer capabilities of exfoliated simply-supported graphene flakes. Contrary to common belief we present clear evidence that this type of "corrugation" enhances the load bearing capacity of few-layer graphene as compared to 'flat' specimens. This effect is the result of the significant increase of the graphene/polymer interfacial shear stress per increment of applied strain due to wrinkling and paves the way for designing affordable graphene composites with highly improved stress-transfer efficiency.Comment: 20 pages, 6 figure

    Failure Processes in Embedded Monolayer Graphene under Axial Compression

    Full text link
    Exfoliated monolayer graphene flakes were embedded in a polymer matrix and loaded under axial compression. By monitoring the shifts of the 2D Raman phonons of rectangular flakes of various sizes under load, the critical strain to failure was determined. Prior to loading care was taken for the examined area of the flake to be free of residual stresses. The critical strain values for first failure were found to be independent of flake size at a mean value of -0.60 % corresponding to a yield stress of -6 GPa. By combining Euler mechanics with a Winkler approach, we show that unlike buckling in air, the presence of the polymer constraint results in graphene buckling at a fixed value of strain with an estimated wrinkle wavelength of the order of 1-2 nm. These results were compared with DFT computations performed on analogue coronene/ PMMA oligomers and a reasonable agreement was obtained.Comment: 28 pages. Manuscript 20 pages, 8 figures. Supporting information 10 pages, 6 figure

    Suspended monolayer graphene under true uniaxial deformation

    Get PDF
    2D crystals, such as graphene, exhibit the higher strength and stiffness of any other known man-made or natural material. So far, this assertion has been primarily based on modelling predictions and on bending experiments in combination with pertinent modelling. True uniaxial loading of suspended graphene is not easy to accomplish; however such an experiment is of paramount importance in order to assess the intrinsic properties of graphene without the influence of an underlying substrate. In this work we report on uniaxial tension of graphene up to moderate strains of 0.8% ca.. This has been made possible by sandwiching the graphene flake between two polymethylmethacrylate (PMMA) layers and by suspending its central part by the removal of a section of PMMA with e-beam lithography. True uniaxial deformation is confirmed by the measured large phonon shifts with strain by Raman spectroscopy and the indication of lateral buckling (similar to what is observed for thin macroscopic membranes under tension). Finally, we also report on how the stress is transferred to the suspended specimen through the adhesive grips and determine the value of interfacial shear stress that is required for efficient axial loading in such a system

    Ab Initio Study of Magnesium and Magnesium Hydride Nanoclusters and Nanocrystals: Examining Optimal Structures and Compositions for Efficient Hydrogen Storage

    No full text
    On the basis of the attractive possibility of efficient hydrogen storage in light metal hydrides, we have examined a large variety of Mg<sub><i>n</i></sub>H<sub><i>m</i></sub> nanoclusters and (MgH<sub>2</sub>)<sub><i>n</i></sub> nanocrystals (<i>n</i> = 2–216, <i>m</i> = 2–436) using high level coupled cluster, CCSD­(T), <i>ab initio</i> methods, and judicially chosen density functional calculations of comparable quality and (near chemical) accuracy. Our calculated desorption energies as a function of size and percentage of hydrogen have pinpointed optimal regions of sizes and concentrations of hydrogen which are in full agreement with recent experimental findings. Furthermore, our results reproduce the experimental desorption energy of 75.5 kJ/mol for the infinite system with remarkable accuracy (76.5 ± 1.5 kJ/mol)
    corecore