13 research outputs found

    Arctic Sea Ice Loss in Different Regions Leads to Contrasting Northern Hemisphere Impacts

    Get PDF
    To explore the mechanisms linking Arctic sea-ice loss to changes in mid-latitude surface temperatures, we conduct idealized modeling experiments using an intermediate general circulation model and with sea-ice loss confined to the Atlantic or Pacific sectors of the Arctic (Barents-Kara or Chukchi-Bering Seas). Extending previous findings, there are opposite effects on the winter stratospheric polar vortex for both large-magnitude (late twenty-first century) and moderate-magnitude sea-ice loss. Accordingly, there are opposite tropospheric Arctic Oscillation (AO) responses for moderate-magnitude sea-ice loss. However, there are similar strength negative AO responses for large-magnitude sea-ice loss, suggesting that tropospheric mechanisms become relatively more important than stratospheric mechanisms as the sea-ice loss magnitude increases. The mid-latitude surface temperature response for each loss region and magnitude can be understood as the combination of an ‘indirect’ part induced by the large-scale circulation (AO) response, and a residual ‘direct’ part that is local to the loss region

    The impact of the mixing properties within the Antarctic stratospheric vortex on ozone loss in spring

    Get PDF
    Calculations of equivalent length from an artificial advected tracer provide new insight into the isentropic transport processes occurring within the Antarctic stratospheric vortex. These calculations show two distinct regions of approximately equal area: a strongly mixed vortex core and a broad ring of weakly mixed air extending out to the vortex boundary. This broad ring of vortex air remains isolated from the core between late winter and midspring. Satellite measurements of stratospheric H2O confirm that the isolation lasts until at least mid-October. A three-dimensional chemical transport model simulation of the Antarctic ozone hole quantifies the ozone loss within this ring and demonstrates its isolation. In contrast to the vortex core, ozone loss in the weakly mixed broad ring is not complete. The reasons are twofold. First, warmer temperatures in the broad ring prevent continuous polar stratospheric cloud (PSC) formation and the associated chemical processing (i.e., the conversion of unreactive chlorine into reactive forms). Second, the isolation prevents ozone-rich air from the broad ring mixing with chemically processed air from the vortex core. If the stratosphere continues to cool, this will lead to increased PSC formation and more complete chemical processing in the broad ring. Despite the expected decline in halocarbons, sensitivity studies suggest that this mechanism will lead to enhanced ozone loss in the weakly mixed region, delaying the future recovery of the ozone hole

    Oceanographers' contribution to climate modelling and prediction: progress to date and a future perspective

    No full text
    The ocean plays an essential role in determining aspects of the climate through its influence on coupled processes involving the atmosphere, cyrosphere and biogeochemistry, including budgets of heat and carbon dioxide and sea-level rise. Here, the key developments in ocean modelling over the past 20 years are reviewed and the prospects for the next 20 years are outlined, considering a hierarchy of idealized, conceptual and realistic modelling frameworks. It is emphasized that any long-term modelling strategy needs to be underpinned and complemented by fundamental theoretical and observational research activities. The need to be aware of the societal and technological drivers that will shape future research directions is also articulated

    Mapping unstable manifolds using drifters/floats in a Southern Ocean field campaign

    No full text
    Ideas from dynamical systems theory have been used in an observational field campaign in the Southern Ocean to provide information on the mixing structure of the flow. Instantaneous snapshops of data from satellite altimetry provide information concerning surface currents at a scale of 100 km or so. We show that by using time-series of satellite altimetry we are able to deduce reliable information about the structure of the surface flow at scales as small as 10 km or so. This information was used in near-real time to provide an estimate of the location of stable and unstable manifolds in the vicinity of the Antarctic Circumpolar Current. As part of a large U.K./U.S. observational field campaign (DIMES: Diapycnal and Isopycnal Mixing Experiment in the Southern Ocean) a number of drifters and floats were then released (at the surface and at a depth of approximately 1 km) close to the estimated hyperbolic point at the intersection of the two manifolds, in several locations with apparently different dynamical characteristics. The subsequent trajectories of the drifters/floats has allowed the unstable manifolds to be tracked, and the relative separation of pairs of floats has allowed an estimation of Lyapunov exponents. The results of these deployments have given insight into the strengths and limitations of the satellite data which does not resolve small scales in the velocity field, and have elucidated the transport and mixing structure of the Southern Ocean at the surface and at depth

    The formation of nonzonal jets over sloped topography

    Get PDF
    Coherent jets are ubiquitous features of the ocean’s circulation, and their characteristics, such as orientation and energetics, may be influenced by topography. In this study, the authors introduce a large-scale, topographic slope with an arbitrary orientation into quasigeostrophic, doubly periodic, barotropic and baroclinic systems. In both systems, the flow organizes itself into coherent tilted nonzonal jets that are aligned perpendicular to the barotropic potential vorticity (PV) gradient. In the two-layer system, the upper layer, the lower layer, and the barotropic PV gradients all have different orientations and therefore the jets cross the layer-wise PV gradients. The fact that the jets cross layer-wise PV gradients and the requirement of conservation of PV for fluid parcels together results in the drift of the tilted jets across the domain. Like their zonal counterparts, the tilted jets exhibit strong transport anisotropy. The dynamical response to jet deflection is very strong in the two-layer baroclinic case, with eddy energy production increasing by orders of magnitude as the topographic slope becomes more zonal. This increase in eddy energy is also reflected in an increase in jet spacing and a reduction in strength of the across-jet transport barriers, shown using an effective diffusivity diagnostic. The dynamics identified here, while formally valid within the constraints of quasigeostrophic scalings, provide important insight into the sensitive relationship between flow orientation and flow stability in regions with broad topographic slopes

    Weather from the stratosphere?

    No full text

    The existence of the edge region of the Antarctic stratospheric vortex

    Get PDF
    New evidence from models, ozone measurements and balloon trajectories is presented that confirms the existence of a broad cohesive region of air at the edge of the Antarctic stratospheric vortex that is only weakly mixed with the core of the vortex. Comprehensive measurements by Antarctic ozonesondes in 2003 show quite different evolution in the edge region than in the core. With one exception, long duration balloons launched from Antarctica in spring 2005 remained confined to either the edge region of the vortex or its core. Calculations of effective diffusivity for 2003 and 2005 show similarly weak mixing in the edge region as earlier calculations for 1996. They again show that the edge region is a significant proportion of the area of the ozone hole. Its importance lies in the possibility that, unmixed, it can have more polar stratospheric clouds during the course of the 21st century, thereby delaying the recovery of the ozone hole
    corecore