256 research outputs found
Le api svelano il mistero delle fonti di emissione di particolato inquinante
Si tratta di una ricerca che è durata due anni, ed è stata pubblicata sul numero di luglio 2015 della Rivista scientifica internazionale Plos One. Gli autori: Ilaria Negri, Marco Pellecchia (Koiné - Consulenze Ambientali S.n.c., Parma, Italy), Christian Mavris (Department of Earth Sciences, Natural History Museum, London, United Kingdom), Gennaro Di Prisco, Emilio Caprio (Dipartimento di Agraria, Laboratorio di Entomologia E. Tremblay, Università degli Studi di Napoli Federico II, Portici - Napoli). Nello studio scientifico i ricercatori dimostrano che le api si comportano anche come “campionatori” attivi di particolato atmosferico, i cosiddetti
PM (dall’inglese “Particulate Matter”), di cui sono ricche le nostre città come troppo spesso avvertono i dati dell’Agenzia Regionale di Protezione dell’Ambiente (ARPA). Dice che l’Iglesiente (Iglesias, Sardegna) è inquinato, fortemente contaminato da metalli pesanti come il piombo e il bario. E svela poi che la salute di chi ci vive potrebbe essere compromessa, se non lo è già, anche dall’alta concentrazione di ferro, silicio e alluminio. Rivela ancora, con scientifica precisione, da dove provengono le micro particelle di queste impercettibilissime polveri: dalle miniere dell’Iglesiente e dalle industrie di Portovesm
Experimental and numerical evaluations on palm microwave heating for Red Palm Weevil pest control
The invasive Red Palm Weevil is the major pest of palms. Several control methods have been applied, however concern is raised regarding the treatments that can cause significant environmental pollution. In this context the use of microwaves is particularly attractive. Microwave heating applications are increasingly proposed in the management of a wide range of agricultural and wood pests, exploiting the thermal death induced in the insects that have a thermal tolerance lower than that of the host matrices. This paper describes research aiming to combat the Red Palm pest using microwave heating systems. An electromagnetic-thermal model was developed to better control the temperature profile inside the palm tissues. In this process both electromagnetic and thermal parameters are involved, the latter being particularly critical depending on plant physiology. Their evaluation was carried out by fitting experimental data and the thermal model with few free parameters. The results obtained by the simplified model well match with both that of a commercial software 3D model and measurements on treated Phoenix canariensis palms with a ring microwave applicator. This work confirms that microwave heating is a promising, eco-compatible solution to fight the spread of weevil
Neonicotinoid Clothianidin reduces honey bee immune response and contributes to Varroa mite proliferation
The neonicotinoid Clothianidin has a negative impact on NF-\u3baB signaling and on immune responses controlled by this transcription factor, which can boost the proliferation of honey bee parasites and pathogens. This effect has been well documented for the replication of deformed wing virus (DWV) induced by Clothianidin in honey bees bearing an asymptomatic infection. Here, we conduct infestation experiments of treated bees to show that the immune-suppression exerted by Clothianidin is associated with an enhanced fertility of the parasitic mite Varroa destructor, as a possible consequence of a higher feeding efficiency. A conceptual model is proposed to describe the synergistic interactions among different stress agents acting on honey bees
Neonicotinoid Clothianidin reduces honey bee immune response and contributes to Varroa mite proliferation
The neonicotinoid Clothianidin has a negative impact on NF-κB signaling and on immune responses controlled by this transcription factor, which can boost the proliferation of honey bee parasites and pathogens. This effect has been well documented for the replication of deformed wing virus (DWV) induced by Clothianidin in honey bees bearing an asymptomatic infection. Here, we conduct infestation experiments of treated bees to show that the immune-suppression exerted by Clothianidin is associated with an enhanced fertility of the parasitic mite Varroa destructor, as a possible consequence of a higher feeding efficiency. A conceptual model is proposed to describe the synergistic interactions among different stress agents acting on honey bees
Haemolymph removal by Varroa mite destabilizes the dynamical interaction between immune effectors and virus in bees, as predicted by Volterra's model
The association between the deformed wing virus and the parasitic mite Varroa destructor has been identified as a major cause of worldwide honeybee colony losses. The mite acts as a vector of the viral pathogen and can trigger its replication in infected bees. However, the mechanistic details underlying this tripartite interaction are still poorly defined, and, particularly, the causes of viral proliferation in mite-infested bees. Here, we develop and test a novel hypothesis that mite feeding destabilizes viral immune control through the removal of both virus and immune effectors, triggering uncontrolled viral replication. Our hypothesis is grounded on the predator-prey theory developed by Volterra, which predicts prey proliferation when both predators and preys are constantly removed from the system. Consistent with this hypothesis, we show that the experimental removal of increasing volumes of haemolymph from individual bees results in increasing viral densities. By contrast, we do not find consistent support for alternative proposed mechanisms of viral expansion via mite immune suppression or within-host viral evolution. Our results suggest that haemolymph removal plays an important role in the enhanced pathogen virulence observed in the presence of feeding Varroa mites. Overall, these results provide a new model for the mechanisms driving pathogen-parasite interactions in bees, which ultimately underpin honeybee health decline and colony losses
Dynamics of Persistent and Acute Deformed Wing Virus Infections in Honey Bees, Apis mellifera
The dynamics of viruses are critical to our understanding of disease pathogenesis. Using honey bee Deformed wing virus (DWV) as a model, we conducted field and laboratory studies to investigate the roles of abiotic and biotic stress factors as well as host health conditions in dynamics of virus replication in honey bees. The results showed that temperature decline could lead to not only significant decrease in the rate for pupae to emerge as adult bees, but also an increased severity of the virus infection in emerged bees, partly explaining the high levels of winter losses of managed honey bees, Apis mellifera, around the world. By experimentally exposing adult bees with variable levels of parasitic mite Varroa destructor, we showed that the severity of DWV infection was positively correlated with the density and time period of Varroa mite infestation, confirming the role of Varroa mites in virus transmission and activation in honey bees. Further, we showed that host conditions have a significant impact on the outcome of DWV infection as bees that originate from strong colonies resist DWV infection and replication significantly better than bee originating from weak colonies. The information obtained from this study has important implications for enhancing our understanding of host‑pathogen interactions and can be used to develop effective disease control strategies for honey bees
A Path to the Stars: The Evolution of the Species
During the last years, a number of telescopes have been dedicated to the followup of the GRBs. But after the Swift launch, the average observed intensity of the GRBs showed to be lower than thought before. Our experience with the robotic 60 cm REM telescope confirmed this evidence, with a large number oflostGRBs. Then, we proposed to study the feasibility of a 4 m fast pointing class telescope, equipped with a multichannel imagers, from Visible to Near Infrared. In this paper, we present the main result of the feasibility study we performed so far
- …