9,858 research outputs found

    Envelope addressed to Mary Vansant

    Get PDF
    Envelope has a stamp, a return address, a mailing address and two cancellation stamps.https://scholars.fhsu.edu/tj_ks_territorial_docs/1000/thumbnail.jp

    Experimental study of acoustic displays of flight parameters in a simulated aerospace vehicle

    Get PDF
    Evaluating acoustic displays of target location in target detection and of flight parameters in simulated aerospace vehicle

    Non-Chern-Simons Topological Mass Generation in (2+1) Dimensions

    Get PDF
    By dimensional reduction of a massive BF theory, a new topological field theory is constructed in (2+1) dimensions. Two different topological terms, one involving a scalar and a Kalb-Ramond fields and another one equivalent to the four-dimensional BF term, are present. We constructed two actions with these topological terms and show that a topological mass generation mechanism can be implemented. Using the non-Chern-Simons topological term, an action is proposed leading to a classical duality relation between Klein-Gordon and Maxwell actions. We also have shown that an action in (2+1) dimensions with the Kalb-Ramond field is related by Buscher's duality transformation to a massive gauge-invariant Stuckelberg-type theory.Comment: 8 pages, no figures, RevTE

    On the Validity of the Tomonaga Luttinger Liquid Relations for the One-dimensional Holstein Model

    Get PDF
    For the one-dimensional Holstein model, we show that the relations among the scaling exponents of various correlation functions of the Tomonaga Luttinger liquid (LL), while valid in the thermodynamic limit, are significantly modified by finite size corrections. We obtain analytical expressions for these corrections and find that they decrease very slowly with increasing system size. The interpretation of numerical data on finite size lattices in terms of LL theory must therefore take these corrections into account. As an important example, we re-examine the proposed metallic phase of the zero-temperature, half-filled one-dimensional Holstein model without employing the LL relations. In particular, using quantum Monte Carlo calculations, we study the competition between the singlet pairing and charge ordering. Our results do not support the existence of a dominant singlet pairing state.Comment: 7 page

    The Spectrum of Pluto, 0.40 - 0.93 μ\mum I. Secular and longitudinal distribution of ices and complex organics

    Full text link
    Context. During the last 30 years the surface of Pluto has been characterized, and its variability has been monitored, through continuous near-infrared spectroscopic observations. But in the visible range only few data are available. Aims. The aim of this work is to define the Pluto's relative reflectance in the visible range to characterize the different components of its surface, and to provide ground based observations in support of the New Horizons mission. Methods. We observed Pluto on six nights between May and July 2014, with the imager/spectrograph ACAM at the William Herschel Telescope (La Palma, Spain). The six spectra obtained cover a whole rotation of Pluto (Prot = 6.4 days). For all the spectra we computed the spectral slope and the depth of the absorption bands of methane ice between 0.62 and 0.90 μ\mum. To search for shifts of the center of the methane bands, associated with dilution of CH4 in N2, we compared the bands with reflectances of pure methane ice. Results. All the new spectra show the methane ice absorption bands between 0.62 and 0.90 μ\mum. The computation of the depth of the band at 0.62 μ\mum in the new spectra of Pluto, and in the spectra of Makemake and Eris from the literature, allowed us to estimate the Lambert coefficient at this wavelength, at a temperature of 30 K and 40 K, never measured before. All the detected bands are blue shifted, with minimum shifts in correspondence with the regions where the abundance of methane is higher. This could be indicative of a dilution of CH4:N2 more saturated in CH4. The longitudinal and secular variations of the parameters measured in the spectra are in accordance with results previously reported in the literature and with the distribution of the dark and bright material that show the Pluto's albedo maps from New Horizons.Comment: This manuscript may change and improve during the reviewing process. The data reduction and calibration is reliable and has been checked independently using different reduction approaches. The data will be made publicily available when the paper is accepted. If you need them before, please, contact the autho

    Quantum Chemistry, Anomalous Dimensions, and the Breakdown of Fermi Liquid Theory in Strongly Correlated Systems

    Full text link
    We formulate a local picture of strongly correlated systems as a Feynman sum over atomic configurations. The hopping amplitudes between these atomic configurations are identified as the renormalization group charges, which describe the local physics at different energy scales. For a metallic system away from half-filling, the fixed point local Hamiltonian is a generalized Anderson impurity model in the mixed valence regime. There are three types of fixed points: a coherent Fermi liquid (FL) and two classes of self-similar (scale invariant) phases which we denote incoherent metallic states (IMS). When the transitions between the atomic configurations proceed coherently at low energies, the system is a Fermi liquid. Incoherent transitions between the low energy atomic configurations characterize the incoherent metallic states. The initial conditions for the renormalization group flow are determined by the physics at rather high energy scales. This is the domain of local quantum chemistry. We use simple quantum chemistry estimates to specify the basin of attraction of the IMS fixed points.Comment: 12 pages, REVTE

    Delocalization in Coupled Luttinger Liquids with Impurities

    Full text link
    We study effects of quenched disorder on coupled two-dimensional arrays of Luttinger liquids (LL) as a model for stripes in high-T_c compounds. In the framework of a renormalization-group analysis, we find that weak inter-LL charge-density-wave couplings are always irrelevant as opposed to the pure system. By varying either disorder strength, intra- or inter-LL interactions, the system can undergo a delocalization transition between an insulator and a novel strongly anisotropic metallic state with LL-like transport. This state is characterized by short-ranged charge-density-wave order, the superconducting order is quasi long-ranged along the stripes and short-ranged in the transversal direction.Comment: 6 pages, 5 figures, substantially extended and revised versio

    Classical Phase Fluctuations in Incommensurate Peierls Chains

    Full text link
    In the pseudogap regime of one-dimensional incommensurate Peierls systems, fluctuations of the phase of the order parameter prohibit the emergence of long-range order and generate a finite correlation length. For classical phase fluctuations, we present exact results for the average electronic density of states, the mean localization length, the electronic specific heat and the spin susceptibility at low temperatures. Our results for the susceptibility give a good fit to experimental data.Comment: 4 Revtex pages, 4 figures, submitted to Phys. Rev. Let

    Superconductivity of a Metallic Stripe Embedded in an Antiferromagnet

    Full text link
    We study a simple model for the metallic stripes found in La1.6−xNd0.4SrxCuO4La_{1.6-x}Nd_{0.4}Sr_xCuO_4: two chain Hubbard ladder embedded in a static antiferromagnetic environments. We consider two cases: a ``topological stripe'', for which the phase of the Neel order parameter shifts by π\pi across the ladder, and a ``non-topological stripe'', for which there is no phase shift across the ladder. We perform one-loop renormalization group calculations to determine the low energy properties. We compare the results with those of the isolated ladder and show that for small doping superconductivity is enhanced in the topological stripe, and suppressed in the non-topological one. In the topological stripe, the superconducting order parameter is a mixture of a spin singlet component with zero momentum and a spin triplet component with momentum π\pi. We argue that this mixture is generic, and is due to the presence of a new term in the quantum Ginzburg-Landau action. Some consequences of this mixing are discussed.Comment: 6 pages, 3 eps figure
    • …
    corecore