45 research outputs found
Engrailed2 modulates cerebellar granule neuron precursor proliferation, differentiation and insulin-like growth factor 1 signaling during postnatal development
BACKGROUND: The homeobox transcription factor Engrailed2 (En2) has been studied extensively in neurodevelopment, particularly in the midbrain/hindbrain region and cerebellum, where it exhibits dynamic patterns of expression and regulates cell patterning and morphogenesis. Because of its roles in regulating cerebellar development and evidence of cerebellar pathology in autism spectrum disorder (ASD), we previously examined an ENGRAILED2 association and found evidence to support EN2 as a susceptibility gene, a finding replicated by several other investigators. However, its functions at the cell biological level remain undefined. In the mouse, En2 gene is expressed in granule neuron precursors (GNPs) just as they exit the cell cycle and begin to differentiate, raising the possibility that En2 may modulate these developmental processes. METHODS: To define En2 functions, we examined proliferation, differentiation and signaling pathway activation in En2 knockout (KO) and wild-type (WT) GNPs in response to a variety of extracellular growth factors and following En2 cDNA overexpression in cell culture. In vivo analyses of cerebellar GNP proliferation as well as responses to insulin-like growth factor-1 (IGF1) treatment were also conducted. RESULTS: Proliferation markers were increased in KO GNPs in vivo and in 24-h cultures, suggesting En2 normally serves to promote cell cycle exit. Significantly, IGF1 stimulated greater DNA synthesis in KO than WT cells in culture, a finding associated with markedly increased phospho-S6 kinase activation. Similarly, there was three-fold greater DNA synthesis in the KO cerebellum in response to IGF1 in vivo. On the other hand, KO GNPs exhibited reduced neurite outgrowth and differentiation. Conversely, En2 overexpression increased cell cycle exit and promoted neuronal differentiation. CONCLUSIONS: In aggregate, our observations suggest that the ASD-associated gene En2 promotes GNP cell cycle exit and differentiation, and modulates IGF1 activity during postnatal cerebellar development. Thus, genetic/epigenetic alterations of EN2 expression may impact proliferation, differentiation and IGF1 signaling as possible mechanisms that may contribute to ASD pathogenesis
Amphiregulin Is a Novel Growth Factor Involved in Normal Bone Development and in the Cellular Response to Parathyroid Hormone Stimulation
Parathyroid hormone (PTH) is the major mediator of calcium homeostasis and bone remodeling and is now known to be an effective drug for osteoporosis treatment. Yet the mechanisms responsible for its functions in bone are largely unknown. Here we report that the expression of amphiregulin (AR), a member of the epidermal growth factor (EGF) family, is rapidly and highly up-regulated by PTH in several osteoblastic cell lines and bone tissues. Other osteotropic hormones (1{alpha},25-dihydroxyvitamin D3 and prostaglandin E2) also strongly stimulate AR expression. We found all EGF-like ligands and their receptors are expressed in osteoblasts, but AR is the only member that is highly regulated by PTH. Functional studies demonstrated that although AR is a potent growth factor for preosteoblasts, it completely inhibits further differentiation. AR also strongly and quickly stimulated Akt and ERK phosphorylation and c-fos and c-jun expression in an EGF receptor-dependent manner. Moreover, AR null mice displayed significantly less tibial trabecular bone than wild-type mice. Taken together, we have identified a novel growth factor that is PTH-regulated and appears to have an important role in bone metabolism
Granule Cell Survival is Deficient in PAC1(-/-) Mutant Cerebellum.
International audiencePACAP exerts neuroprotective effects during development, especially in the cerebellum where PAC1 receptor and ligand are both expressed. However, while previous studies using PACAP injections in postnatal animals defined trophic effects of exogenous peptide, the role of endogenous PACAP remains unexplored. Here, we used PAC1(-/-) mice to investigate the role of PACAP receptor signaling in postnatal day 7 cerebellum. There was no difference in DNA synthesis in the cerebellar EGL of PAC1(-/-) compared to wild type animals, assessed using thymidine incorporation and BrdU immunohistochemistry. In contrast, we found that a significant proportion of newly generated neurons were eliminated before they successfully differentiated in the granule cell layer. In aggregate, these results suggest that endogenous PACAP plays an important role in cell survival during cerebellar development, through the activation of the PAC1 receptor
Cocaine-regulated trafficking of dopamine transporters in cultured neurons revealed by a pH sensitive reporter
Summary: Cocaine acts by inhibiting plasma membrane dopamine transporter (DAT) function and altering its surface expression. The precise manner and mechanism by which cocaine regulates DAT trafficking, especially at neuronal processes, are poorly understood. In this study, we engineered and validated the use of DAT-pHluorin for studying DAT localization and its dynamic trafficking at neuronal processes of cultured mouse midbrain neurons. We demonstrate that unlike neuronal soma and dendrites, which contain a majority of the DATs in weakly acidic intracellular compartments, axonal DATs at both shafts and boutons are primarily (75%) localized to the plasma membrane, whereas large varicosities contain abundant intracellular DAT within acidic intracellular structures. We also demonstrate that cocaine exposure leads to a Synaptojanin1-sensitive DAT internalization process followed by membrane reinsertion that lasts for days. Thus, our study reveals the previously unknown dynamics and molecular regulation for cocaine-regulated DAT trafficking in neuronal processes