44 research outputs found

    Three Charge Supertubes in Type IIB Plane Wave Backgrounds

    Full text link
    We deform the supersymmetric black ring of five dimensional supergravity coupled to N-1 vector multiplets to obtain an asymptotically Goedel supersymmetric black ring. For the U(1)^3 model we lift this solution to obtain a three charge D1-D5-P supertube which asymptotes to a 1/2 supersymmetric plane wave of Type IIB supergravity. Further, we also show how one may deform the asymptotically flat three charge supertube of type IIB, in the special case of vanishing KK dipole charge, to a three charge supertube which asymptotes to the maximally supersymmetric plane wave.Comment: 1+14 pages, JHEP

    The Black Di-Ring: An Inverse Scattering Construction

    Full text link
    We use the inverse scattering method (ISM) to derive concentric non-supersymmetric black rings. The approach used here is fully five-dimensional, and has the modest advantage that it generalizes readily to the construction of more general axi-symmetric solutions.Comment: v3: 2 subsections added, typos fixed, more refs, journal version. v4: a transcription error in the ADM mass fixe

    Supersymmetric Black Rings on Eguchi-Hanson Space

    Full text link
    We construct new supersymmetric black ring solutions on the Eguchi-Hanson base space as solutions of five-dimensional minimal supergravity. The solutions have the same two angular momentum components and the asymptotic structure on timeslices is asymptotically locally Euclidean. The S^1-direction of the black ring is along the equator on a S^2-bolt on the Eguchi-Hanson space. We also investigate the limit to a black hole, which describes the BMPV black hole with the topology of the lens space L(2;1)=S^3/Z_2.Comment: 21 page

    Geodesics and Symmetries of Doubly-Spinning Black Rings

    Full text link
    This paper studies various properties of the Pomeransky-Sen'kov doubly-spinning black ring spacetime. I discuss the structure of the ergoregion, and then go on to demonstrate the separability of the Hamilton-Jacobi equation for null, zero energy geodesics, which exist in the ergoregion. These geodesics are used to construct geometrically motivated coordinates that cover the black hole horizon. Finally, I relate this weak form of separability to the existence of a conformal Killing tensor in a particular 4-dimensional spacetime obtained by Kaluza-Klein reduction, and show that a related conformal Killing-Yano tensor only exists in the singly-spinning case.Comment: Minor corrections/clarifications and references added, results of paper unchanged. Accepted for publication by Class. Quant. Grav. (26 pages, 5 figures

    Constructing near-horizon geometries in supergravities with hidden symmetry

    Get PDF
    We consider the classification of near-horizon geometries in a general two-derivative theory of gravity coupled to abelian gauge fields and uncharged scalars in four and five dimensions, with one and two commuting rotational symmetries respectively. Assuming that the theory of gravity reduces to a 3d non-linear sigma model (as is typically the case for ungauged supergravities), we show that the functional form of any such near-horizon geometry may be determined. As an example we apply this to five dimensional minimal supergravity. We also construct an example of a five parameter near-horizon geometry solution to this theory with S^1 X S^2 horizon topology. We discuss its relation to the near-horizon geometries of the yet to be constructed extremal black rings with both electric and dipole charges.Comment: Latex, 30 pages. v2: discussion in section 5 modified and improved, other minor changes, references adde

    Rotating black rings on Taub-NUT

    Full text link
    In this paper, we construct new solutions describing rotating black rings on Taub-NUT using the inverse-scattering method. These are five-dimensional vacuum space-times, generalising the Emparan-Reall and extremal Pomeransky-Sen'kov black rings to a Taub-NUT background space. When reduced to four dimensions in Kaluza-Klein theory, these solutions describe (possibly rotating) electrically charged black holes in superposition with a finitely separated magnetic monopole. Various properties of these solutions are studied, from both a five- and four-dimensional perspective.Comment: 33 pages, 3 figures, LaTe

    Black Strings, Black Rings and State-space Manifold

    Full text link
    State-space geometry is considered, for diverse three and four parameter non-spherical horizon rotating black brane configurations, in string theory and MM-theory. We have explicitly examined the case of unit Kaluza-Klein momentum D1D5PD_1D_5P black strings, circular strings, small black rings and black supertubes. An investigation of the state-space pair correlation functions shows that there exist two classes of brane statistical configurations, {\it viz.}, the first category divulges a degenerate intrinsic equilibrium basis, while the second yields a non-degenerate, curved, intrinsic Riemannian geometry. Specifically, the solutions with finitely many branes expose that the two charged rotating D1D5D_1D_5 black strings and three charged rotating small black rings consort real degenerate state-space manifolds. Interestingly, arbitrary valued M5M_5-dipole charged rotating circular strings and Maldacena Strominger Witten black rings exhibit non-degenerate, positively curved, comprehensively regular state-space configurations. Furthermore, the state-space geometry of single bubbled rings admits a well-defined, positive definite, everywhere regular and curved intrinsic Riemannian manifold; except for the two finite values of conserved electric charge. We also discuss the implication and potential significance of this work for the physics of black holes in string theory.Comment: 41 pages, Keywords: Rotating Black Branes; Microscopic Configurations; State-space Geometry, PACS numbers: 04.70.-s Physics of black holes; 04.70.Bw Classical black holes; 04.70.Dy Quantum aspects of black holes, evaporation, thermodynamic

    Uniqueness Theorem for Black Hole Space-Times with Multiple Disconnected Horizons

    Full text link
    We show uniqueness of stationary and asymptotically flat black hole space-times with multiple disconnected horizons and with two rotational Killing vector fields in the context of five-dimensional minimal supergravity (Einstein-Maxwell-Chern-Simons gravity). The novelty in this work is the introduction in the uniqueness theorem of intrinsic local charges measured near each horizon as well as the measurement of local fluxes besides the asymptotic charges that characterize a particular solution. A systematic method of defining the boundary conditions on the fields that specify a black hole space-time is given based on the study of its rod structure (domain structure). Also, an analysis of known solutions with disconnected horizons is carried out as an example of an application of this theorem.Comment: 28 pages, 5 figures. v3: Further improvements on uniqueness theorem, Lemma introduced for clarity of derivation, new quantities introduced to treat special case with zero flux, refs. added, typos fixe

    Inverse Scattering Construction of a Dipole Black Ring

    Full text link
    Using the inverse scattering method in six dimensions we construct the dipole black ring of five dimensional Einstein-Maxwell-dilaton theory with dilaton coupling a = 2(2/3)^(1/2).The 5d theory can be thought of as the NS sector of low energy string theory in Einstein frame. It can also be obtained by dimensionally reducing six-dimensional vacuum gravity on a circle. Our new approach uses GL(4, R) integrability structure of the theory inherited from six-dimensional vacuum gravity. Our approach is also general enough to potentially generate dipole black objects carrying multiple rotations as well as more exotic multi-horizon configurations

    Black rings with a small electric charge: gyromagnetic ratios and algebraic alignment

    Get PDF
    We study electromagnetic test fields in the background of vacuum black rings using Killing vectors as vector potentials. We consider both spacetimes with a rotating S^1 and with a rotating S^2 and we demonstrate, in particular, that the gyromagnetic ratio of slightly charged black rings takes the value g=3 (this will in fact apply to a wider class of spacetimes). We also observe that a S^2-rotating black ring immersed in an external "aligned" magnetic field completely expels the magnetic flux in the extremal limit. Finally, we discuss the mutual alignment of principal null directions of the Maxwell 2-form and of the Weyl tensor, and the algebraic type of exact charged black rings. In contrast to spherical black holes, charged rings display new distinctive features and provide us with an explicit example of algebraically general (type G) spacetimes in higher dimensions. Appendix A contains some global results on black rings with a rotating 2-sphere. Appendix C shows that g=D-2 in any D>=4 dimensions for test electromagnetic fields generated by a time translation.Comment: 22 pages, 3 figures. v2: new appendix C finds the gyromagnetic ratio g=D-2 in any dimensions, two new references. To appear in JHE
    corecore