35 research outputs found

    Retuning the Catalytic Bias and Overpotential of a [NiFe]-Hydrogenase via a Single Amino Acid Exchange at the Electron Entry/Exit Site

    Get PDF
    The redox chemistry of the electron entry/exit site in Escherichia coli hydrogenase-1 is shown to play a vital role in tuning biocatalysis. Inspired by nature, we generate a HyaA-R193L variant to disrupt a proposed Arg-His cation-π interaction in the secondary coordination sphere of the outermost, "distal", iron-sulfur cluster. This rewires the enzyme, enhancing the relative rate of H 2 production and the thermodynamic efficiency of H 2 oxidation catalysis. On the basis of Fourier transformed alternating current voltammetry measurements, we relate these changes in catalysis to a shift in the distal [Fe 4S 4] 2+/1+ redox potential, a previously experimentally inaccessible parameter. Thus, metalloenzyme chemistry is shown to be tuned by the second coordination sphere of an electron transfer site distant from the catalytic center

    Probing second harmonic components of pH-sensitive Redox processes in a mesoporous TiO2-Nafion film electrode with Fourier-transformed large-amplitude sinusoidally modulated voltammetry

    No full text
    Electrochemical processes in mesoporous TiO2-Nafion thin films deposited on indium tin oxide (ITO) electrodes are inherently complex and affected by capacitance, Ohmic iR-drop, RC-time constant phenomena, and by potential and pH-dependent conductivity. In this study, large-amplitude sinusoidally modulated voltammetry (LASMV) is employed to provide access to almost purely Faradaic-based current data from second harmonic components, as well as capacitance and potential domain information from the fundamental harmonic for mesoporous TiO2-Nafion film electrodes. The LASMV response has been investigated with and without an immobilized one-electron redox system, ferrocenylmethyltrimethylammonium+. Results clearly demonstrate that the electron transfer associated with the immobilized ferrocene derivative follows two independent pathways i) electron hopping within the Nafion network and ii) conduction through the TiO2 backbone. The pH effect on the voltammetric response for the TiO2 reduction pathway (ii) can be clearly identified in the 2nd harmonic LASMV response with the diffusion controlled ferrocene response (i) acting as a pH independent reference. Application of second harmonic data derived from LASMV measurement, because of the minimal contribution from capacitance currents, may lead to reference-free pH sensing with systems like that found for ferrocene derivatives

    Controlled Modification and Direct Characterization of Multimode-fiber Refractive-index Profiles

    No full text
    A combination of controlled annealing and characterization by scanning probe microscopy (SPM) is used to demonstrate that the refractive-index profile of a commercially available silica-based optical fiber can be accurately reconfigured for use as an evanescent field sensor. The process relies on the controlled relocation of the silica glass dopants across the fiber cross section through heat treatment and the accurate measurement of the resulting dopant redistribution with SPM and differential etching techniques. The effect of variable annealing along a length of fiber is to produce a mode transformer to couple light from a laser source into the sensing region of the fiber

    Attributes of DC aperiodic and AC harmonic components derived from large amplitude Fourier transformed voltammetry under microfluidic control in a channel electrode

    No full text
    The flow rate dependencies of the aperiodic dc and fundamental to eighth ac harmonic components derived from large-amplitude Fourier transformed ac (FT-ac) voltammetry have been evaluated in a microfluidic flow cell containing a 25 µm gold microband electrode. For the oxidation of ferrrocene methanol ([FcMeOH]/[FcMeOH] + process) in aqueous 0.1 M KNO3 electrolyte, standard “Levich-like” dc behavior is observed for the aperiodic dc component, which enables the diffusion coefficient for FcMeOH to be obtained. In experimental studies, the first and second ac harmonic components contain contributions from the double layer capacitance current, thereby allowing details of the non-Faradaic current to be established. In contrast, the higher order harmonics and dc aperiodic component are essentially devoid of double layer capacitance contributions allowing the faradaic current dependence on flow rate to be studied. Significantly, flow rate independent data conforming to linear diffusion controlled theory are found in the sixth and higher ac harmonics at a frequency of 15 Hz and for all ac harmonics at a frequency of 90 Hz. Analysis of FT-ac voltammograms by theory based on stationary microband or planar electrode configurations confirms that stationary microband and planar electrode configuration and experimental data all converge for the higher order harmonics and establishes that the electrode kinetics are very fast (≥1 cms-1). The ability to locate from a single experiment, a dc Faradaic component displaying Levich behavior, fundamental and second harmonics that contain details of the double layer capacitance, and Faradaic ac higher order harmonic currents that are devoid of capacitance, independent of the volume flow rate and also conform closely to mass transport by planar diffusion, provides enhanced flexibility in mass transport and electrode kinetic analysis and in understanding the performance of hydrodynamic electrochemical cells and reactors
    corecore