24 research outputs found

    A systematic review of studies investigating the acute effects of N-methyl- D-aspartate receptor antagonists on behavioural despair in normal animals suggests poor predictive validity.

    Get PDF
    The ability of the N-methyl- D -aspartate receptor antagonist ketamine to induce a rapid and sustained antidepressant effect has led to a surge in pre-clinical studies investigating underlying mechanisms and seeking novel treatments. Animal models are key to this research as they can provide a behavioural readout linking underlying mechanisms to clinical benefits. However, quantifying depression-related behaviours in rodents represents a major challenge with the validity of traditional methods such as models of behavioural despair (forced swim test and tail suspension test) a topic of debate. While there is good evidence to support the value of using these behavioural readouts to study the effects of stress, these approaches have largely failed to detect reliable phenotypic effects in other disease models. In this systematic review, we identified publications which had tested N-methyl- D -aspartate receptor antagonists in normal animals using either the forced swim test or tail suspension test. We compared findings for different doses and time points and also drugs with different clinical profiles to investigate how well the outcomes in the rodent model predicted their effects in the clinic. Despite clear evidence that N-methyl- D -aspartate receptor antagonists reduce immobility time and hence exhibit an antidepressant profile in these tasks, we found similar effects with both clinically effective drugs as well as those which have failed to show efficacy in clinical trials. These findings suggest that behavioural despair tests in normal animals do not provide a good method to predict clinical efficacy of N-methyl- D -aspartate receptor antagonists

    Data Generated during the 2018 LAPSE-RATE Campaign: An Introduction and Overview

    Get PDF
    Unmanned aircraft systems (UASs) offer innovative capabilities for providing new perspectives on the atmosphere, and therefore atmospheric scientists are rapidly expanding their use, particularly for studying the planetary boundary layer. In support of this expansion, from 14 to 20 July 2018 the International Society for Atmospheric Research using Remotely piloted Aircraft (ISARRA) hosted a community flight week, dubbed the Lower Atmospheric Profiling Studies at Elevation – a Remotely-piloted Aircraft Team Experiment (LAPSE-RATE; de Boer et al., 2020a). This field campaign spanned a 1-week deployment to Colorado\u27s San Luis Valley, involving over 100 students, scientists, engineers, pilots, and outreach coordinators. These groups conducted intensive field operations using unmanned aircraft and ground-based assets to develop comprehensive datasets spanning a variety of scientific objectives, including a total of nearly 1300 research flights totaling over 250 flight hours. This article introduces this campaign and lays the groundwork for a special issue on the LAPSE-RATE project. The remainder of the special issue provides detailed overviews of the datasets collected and the platforms used to collect them. All of the datasets covered by this special issue have been uploaded to a LAPSE-RATE community set up at the Zenodo data archive (https://zenodo.org/communities/lapse-rate/, last access: 3 December 2020)

    Children must be protected from the tobacco industry's marketing tactics.

    Get PDF

    Genetic mechanisms of critical illness in COVID-19.

    Get PDF
    Host-mediated lung inflammation is present1, and drives mortality2, in the critical illness caused by coronavirus disease 2019 (COVID-19). Host genetic variants associated with critical illness may identify mechanistic targets for therapeutic development3. Here we report the results of the GenOMICC (Genetics Of Mortality In Critical Care) genome-wide association study in 2,244 critically ill patients with COVID-19 from 208 UK intensive care units. We have identified and replicated the following new genome-wide significant associations: on chromosome 12q24.13 (rs10735079, P = 1.65 × 10-8) in a gene cluster that encodes antiviral restriction enzyme activators (OAS1, OAS2 and OAS3); on chromosome 19p13.2 (rs74956615, P = 2.3 × 10-8) near the gene that encodes tyrosine kinase 2 (TYK2); on chromosome 19p13.3 (rs2109069, P = 3.98 ×  10-12) within the gene that encodes dipeptidyl peptidase 9 (DPP9); and on chromosome 21q22.1 (rs2236757, P = 4.99 × 10-8) in the interferon receptor gene IFNAR2. We identified potential targets for repurposing of licensed medications: using Mendelian randomization, we found evidence that low expression of IFNAR2, or high expression of TYK2, are associated with life-threatening disease; and transcriptome-wide association in lung tissue revealed that high expression of the monocyte-macrophage chemotactic receptor CCR2 is associated with severe COVID-19. Our results identify robust genetic signals relating to key host antiviral defence mechanisms and mediators of inflammatory organ damage in COVID-19. Both mechanisms may be amenable to targeted treatment with existing drugs. However, large-scale randomized clinical trials will be essential before any change to clinical practice

    Effect of remote ischaemic conditioning on clinical outcomes in patients with acute myocardial infarction (CONDI-2/ERIC-PPCI): a single-blind randomised controlled trial.

    Get PDF
    BACKGROUND: Remote ischaemic conditioning with transient ischaemia and reperfusion applied to the arm has been shown to reduce myocardial infarct size in patients with ST-elevation myocardial infarction (STEMI) undergoing primary percutaneous coronary intervention (PPCI). We investigated whether remote ischaemic conditioning could reduce the incidence of cardiac death and hospitalisation for heart failure at 12 months. METHODS: We did an international investigator-initiated, prospective, single-blind, randomised controlled trial (CONDI-2/ERIC-PPCI) at 33 centres across the UK, Denmark, Spain, and Serbia. Patients (age >18 years) with suspected STEMI and who were eligible for PPCI were randomly allocated (1:1, stratified by centre with a permuted block method) to receive standard treatment (including a sham simulated remote ischaemic conditioning intervention at UK sites only) or remote ischaemic conditioning treatment (intermittent ischaemia and reperfusion applied to the arm through four cycles of 5-min inflation and 5-min deflation of an automated cuff device) before PPCI. Investigators responsible for data collection and outcome assessment were masked to treatment allocation. The primary combined endpoint was cardiac death or hospitalisation for heart failure at 12 months in the intention-to-treat population. This trial is registered with ClinicalTrials.gov (NCT02342522) and is completed. FINDINGS: Between Nov 6, 2013, and March 31, 2018, 5401 patients were randomly allocated to either the control group (n=2701) or the remote ischaemic conditioning group (n=2700). After exclusion of patients upon hospital arrival or loss to follow-up, 2569 patients in the control group and 2546 in the intervention group were included in the intention-to-treat analysis. At 12 months post-PPCI, the Kaplan-Meier-estimated frequencies of cardiac death or hospitalisation for heart failure (the primary endpoint) were 220 (8·6%) patients in the control group and 239 (9·4%) in the remote ischaemic conditioning group (hazard ratio 1·10 [95% CI 0·91-1·32], p=0·32 for intervention versus control). No important unexpected adverse events or side effects of remote ischaemic conditioning were observed. INTERPRETATION: Remote ischaemic conditioning does not improve clinical outcomes (cardiac death or hospitalisation for heart failure) at 12 months in patients with STEMI undergoing PPCI. FUNDING: British Heart Foundation, University College London Hospitals/University College London Biomedical Research Centre, Danish Innovation Foundation, Novo Nordisk Foundation, TrygFonden

    Cytotoxic-mediated spontaneous regression of eruptive tufted angioma in a teenage girl

    No full text
    Tufted angioma (TA) is a rare vascular lesion commonly occurring in infancy and early childhood. Presentation is usually a solitary violaceous macule or patch, frequently on the head, neck and upper trunk. It slowly progresses to a deep, indurated, often painful, red to purple plaque, with superimposed papules/nodules, then it stabilizes. Multiple and/or eruptive variants have been occasionally described. Its course varies, including persistence, complication with Kasabach-Merrit syndrome and complete or partial spontaneous regression. This article is protected by copyright. All rights reserved
    corecore