14 research outputs found
Role of Intraoperative Transesophageal Echocardiography in Cardiac Surgery: an Observational Study
AIM: This study is based on the hypothesis that the routine use of transesophageal echocardiography in cardiac surgery will influence the surgical decision taken by the surgeon intra-operatively in Kasr-Alainy hospitals.
METHODS: Patients were examined with intraoperative transesophageal echocardiography (TEE) before and after cardiopulmonary bypass. Complete and comprehensive intraoperative TEE examinations will be performed by TEE certified cardiac anesthesiologists. Data that will be collected from the intraoperative examination and will be compared with preoperative transthoracic echocardiography, and the surgical decision that was taken preoperatively will be revised again with the cardiothoracic surgeon before the start of surgery. Also, TEE will be used again after weaning from bypass for revision and assessment of our decision.
RESULTS: We examined the utility of TEE in 100 patients undergoing different types of cardiac procedures in Kasr Al-Ainy hospital. This prospective clinical investigation found that the pre- and post-CPB TEE examinations influenced surgical decision making in 10% of all evaluated patients.
CONCLUSION: Intraoperative TEE has the potential to influence clinical decision making for cardiac surgical patients significantly. It is useful in surgical planning, guiding various hemodynamic interventions, and assessing the immediate results of surgery. Thus, IOTEE should be used routinely in all patients undergoing all types of cardiac surgeries
Evaluation of chromogenic media and seminested PCR in the identification of Candida species
Identification of Candida cultured from various clinical specimens to the species level is increasingly necessary for clinical laboratories. Although sn PCR identifies the species within hours but its cost-effectiveness is to be considered. So there is always a need for media which help in the isolation and identification at the species level. The study aimed to evaluate the performance of different chromogenic media and to compare the effectiveness of the traditional phenotypic methods vs. seminested polymerase chain reaction (sn PCR) for identification of Candida species. One hundred and twenty seven Candida strains isolated from various clinical specimens were identified by conventional methods, four different chromogenic media and sn PCR. HiCrome Candida Differential and CHROMagar Candida media showed comparably high sensitivities and specificities in the identification of C. albicans, C. tropicalis, C. glabrata and C. krusei. CHROMagar Candida had an extra advantage of identifying all C. parapsilosis isolates. CHROMagar-Pal's medium identified C. albicans, C. tropicalis and C. krusei with high sensitivities and specificities, but couldn't identify C. glabrata or C. parapsilosis. It was the only medium that identified C. dubliniensis with a sensitivity and specificity of 100%. Biggy agar showed the least sensitivities and specificities. The overall concordance of the snPCR compared to the conventional tests including CHROMAgar Candida in the identification of Candida species was 97.5%. The use of CHROMAgar Candida medium is an easy and accurate method for presumptive identification of the most commonly encountered Candida spp
Pulse Pressure Variation-Guided Fluid Therapy during Supratentorial Brain Tumour Excision: A Randomized Controlled Trial
BACKGROUND: Goal-directed fluid therapy (GDFT) improved patient outcomes in various surgical procedures; however, its role during mass brain resection was not well investigated.
AIM: In this study, we evaluated a simple protocol based on intermittent evaluation of pulse pressure variation for guiding fluid therapy during brain tumour resection.
METHODS: Sixty-one adult patients scheduled for supratentorial brain mass excision were randomized into either GDFT group (received intraoperative fluids guided by pulse pressure variation) and control group (received standard care). Both groups were compared according to the following: brain relaxation scale (BRS), mean arterial pressure, heart rate, urine output, intraoperative fluid intake, postoperative serum lactate, and length of hospital stay.
RESULTS: Demographic data, cardiovascular data (mean arterial pressure and heart rate), and BRS were comparable between both groups. GDFT group received more intraoperative fluids {3155 (452) mL vs 2790 (443) mL, P = 0.002}, had higher urine output {2019 (449) mL vs 1410 (382) mL, P < 0.001}, and had lower serum lactate {0.9 (1) mmol versus 2.5 (1.1) mmol, P = 0.03} compared to control group.
CONCLUSION: In conclusion, PPV-guided fluid therapy during supratentorial mass excision, increased intraoperative fluids, and improved peripheral perfusion without increasing brain swelling
Burnout among surgeons before and during the SARS-CoV-2 pandemic: an international survey
Background: SARS-CoV-2 pandemic has had many significant impacts within the surgical realm, and surgeons have been obligated to reconsider almost every aspect of daily clinical practice. Methods: This is a cross-sectional study reported in compliance with the CHERRIES guidelines and conducted through an online platform from June 14th to July 15th, 2020. The primary outcome was the burden of burnout during the pandemic indicated by the validated Shirom-Melamed Burnout Measure. Results: Nine hundred fifty-four surgeons completed the survey. The median length of practice was 10 years; 78.2% included were male with a median age of 37 years old, 39.5% were consultants, 68.9% were general surgeons, and 55.7% were affiliated with an academic institution. Overall, there was a significant increase in the mean burnout score during the pandemic; longer years of practice and older age were significantly associated with less burnout. There were significant reductions in the median number of outpatient visits, operated cases, on-call hours, emergency visits, and research work, so, 48.2% of respondents felt that the training resources were insufficient. The majority (81.3%) of respondents reported that their hospitals were included in the management of COVID-19, 66.5% felt their roles had been minimized; 41% were asked to assist in non-surgical medical practices, and 37.6% of respondents were included in COVID-19 management. Conclusions: There was a significant burnout among trainees. Almost all aspects of clinical and research activities were affected with a significant reduction in the volume of research, outpatient clinic visits, surgical procedures, on-call hours, and emergency cases hindering the training. Trial registration: The study was registered on clicaltrials.gov "NCT04433286" on 16/06/2020
Enhanced Skin Permeation and Controlled Release of β-Sitosterol Using Cubosomes Encrusted with Dissolving Microneedles for the Management of Alopecia
The use of synthetic medication for treating alopecia is restricted because of systemic exposure and related negative effects. Beta-sitosterol (β-ST), a natural chemical, has lately been studied for its potential to promote hair development. The cubosomes with dissolving microneedles (CUBs-MND) created in this study may be a useful starting point for the creation of a sophisticated dermal delivery system for β-ST. Cubosomes (CUBs) were prepared by the emulsification method, using glyceryl monooleate (GMO) as a lipid polymer. CUBs were loaded with dissolving microneedles (MND) fabricated with HA and a PVP-K90 matrix. An ex vivo skin permeation study and an in vivo hair growth efficacy test of β-ST were performed with both CUB and CUB-MND. The average particle size of the CUBs was determined to be 173.67 ± 0.52 nm, with a low polydispersity index (0.3) and a high zeta potential value that prevents the aggregate formation of dispersed particles. When compared to CUBs alone, CUBs-MND displayed higher permeating levels of β-ST at all-time points. In the animals from the CUB-MND group, significant hair development was observed. According to the results of the current investigation, CUBs that integrate dissolving microneedles of β-ST are superior in terms of transdermal skin penetration and activity for the treatment of alopecia
The Combined Anti-Tumor Efficacy of Bioactive Hydroxyapatite Nanoparticles Loaded with Altretamine
In the current study, the combined anti-tumor efficacy of bioactive hydroxyapatite nano- particles (HA-NPs) loaded with altretamine (ALT) was evaluated. The well-known fact that HA has great biological compatibility was confirmed through the findings of the hemolytic experiments and a maximum IC50 value seen in the MTT testing. The preparation of HA-NPs was performed using the chemical precipitation process. An in vitro release investigation was conducted, and the results demonstrated the sustained drug release of the altretamine-loaded hydroxyapatite nanoparticles (ALT-HA-NPs). Studies using the JURKAT E6.1 cell lines MTT assay, and cell uptake, as well as in vivo pharmacokinetic tests using Wistar rats demonstrated that the ALT-HA-NPs were easily absorbed by the cells. A putative synergism between the action of the Ca2+ ions and the anticancer drug obtained from the carrier was indicated by the fact that the ALT-HA-NPs displayed cytotoxicity comparable to the free ALT at 1/10th of the ALT concentration. It has been suggested that a rise in intracellular Ca2+ ions causes cells to undergo apoptosis. Ehrlich’s ascites model in Balb/c mice showed comparable synergistic efficacy in a tumor regression trial. While the ALT-HA-NPs were able to shrink the tumor size by six times, the free ALT was only able to reduce the tumor volume by half
Optimization and In Vitro Characterization of Telmisartan Loaded Sodium Alginate Beads and Its In Vivo Efficacy Investigation in Hypertensive Induced Animal Model
Background: Antihypertensive drug telmisartan (TEL) belongs to BCS class II, which is characterized by low water solubility and, consequently, low oral bioavailability. Gastroretentive systems may overcome the problems associated with low solubility of TEL and incomplete absorption by localizing the drug release in the stomach. The purpose of this study was to prepare TEL-loaded, oil-entrapped, floating alginate beads with the intent of enhancing the oral bioavailability of TEL for the treatment of hypertension. Methods: For the formulation and optimization of seventeen formulations of TEL-loaded oil-entrapped floating alginate beads, a central composite design was utilized. The concentration of sodium alginate (X1), the concentration of cross-linker (X2), and the concentration of sesame oil (X3) served as independent variables, whereas the entrapment efficiency (Y1), in vitro buoyancy (Y2), and drug release Q6h (Y3) served as dependent variables. Using the emulsion gelation method and calcium chloride as the cross-linking agent, different formulations of TEL alginate beads were produced. All formulations were evaluated for their entrapment efficiency percentage, in vitro buoyancy, and in vitro drug release. The optimal formulation of TEL alginate beads was prepared with and without oil and evaluated for entrapment efficiency percentage, in vitro buoyancy, swelling ratio, average size, and in vitro drug release. Using scanning electron microscopes, the surface morphology was determined. Using IR spectroscopy, the compatibility between the ingredients was determined. In vivo evaluation of the optimized formulation in comparison to the free TEL was done in hypertension-induced rats, and the systolic blood pressure and all pharmacokinetic parameters were measured. Results: The prepared beads exhibited a high entrapment efficiency percentage, in vitro buoyancy, and prolonged drug release. TEL was compatible with other ingredients, as approved by IR spectroscopy. The prepared TEL beads were spherical, as shown by the SEM. The relative bioavailability of TEL-loaded oil-entrapped beads was 222.52%, which was higher than that of the pure TEL suspension. The prepared TEL beads formulation exhibited a higher antihypertensive effect for a prolonged time compared to pure TEL suspension. Conclusions: It can be concluded that this innovative delivery method of TEL-loaded oil-entrapped beads is a promising tool for enhancing drug solubility and, thus, oral bioavailability and therapeutic efficacy, resulting in enhanced patient compliance. Furthermore, the in vivo study confirmed the formulation’s extended anti-hypertensive activity in animal models
Ginger Oil Nanoemulsion Formulation Augments Its Antiproliferative Effect in Ehrlich Solid Tumor Model
Cancer is a disease that is characterized by uncontrolled cell proliferation. Breast cancer is the most prevalent cancer among women. Ginger oil is a natural cancer fighter and anti-oxidant. However, the minimal absorption of ginger oil from the gastrointestinal tract accounts for its limited medicinal efficacy. The present study was designed to evaluate the efficacy of a nanoemulsion preparation of ginger oil on its oral bioavailability and in vivo anti-cancer efficacy. Ginger oil nanoemulsion was prepared by a high-pressure homogenization technique using different surfactants (Tween 20, 40, and 80). The prepared formulations were evaluated for droplet size, polydispersity index (PDI), zeta potential (ZP), pH, viscosity, and stability by calculating the creaming index percentage. The best formulation was evaluated for shape by TEM. The antitumor activity of the best nano-formulation was determined in comparison with the free oil using the in vivo Ehrlich solid tumor (EST) model. The prepared ginger oil nanoemulsion formulations exhibited acceptable droplet size in the range from 56.67 ± 3.10 nm to 357.17 ± 3.62 nm. A PDI of less than 0.5 indicates the homogeneity of size distribution. The oil globules possessed a negative charge ranging from −12.33 ± 1.01 to −39.33 ± 0.96 mV. The pH and viscosity were in the acceptable range. The TEM image of the best formulation appeared to be spherical with a small size. The ginger oil nanoemulsion reduced in vivo tumor volume and weight, extended animals’ life span, and ameliorated liver and kidney function in EST-bearing mice. These effects were superior to using free ginger oil. Collectively, the present study demonstrated that the ginger oil nanoemulsion improved oral absorption with a subsequent enhancement of its anti-proliferative efficacy in vivo, suggesting a nano-formulation of ginger oil for better therapeutic outcomes in breast cancer patients