36 research outputs found

    The neuroanatomical basis of panic disorder and social phobia in schizophrenia: a voxel based morphometric study

    Full text link
    [eng] Objective: It is known that there is a high prevalence of certain anxiety disorders among schizophrenic patients, especially panic disorder and social phobia. However, the neural underpinnings of the comorbidity of such anxiety disorders and schizophrenia remain unclear. Our study aims to determine the neuroanatomical basis of the co-occurrence of schizophrenia with panic disorder and social phobia. Methods: Voxel-based morphometry was used in order to examine brain structure and to measure between-group differences, comparing magnetic resonance images of 20 anxious patients, 20 schizophrenic patients, 20 schizophrenic patients with comorbid anxiety, and 20 healthy control subjects. Results: Compared to the schizophrenic patients, we observed smaller grey-matter volume (GMV) decreases in the dorsolateral prefrontal cortex and precentral gyrus in the schizophrenic-anxiety group. Additionally, the schizophrenic group showed significantly reduced GMV in the dorsolateral prefrontal cortex, precentral gyrus, orbitofrontal cortex, temporal gyrus and angular/inferior parietal gyrus when compared to the control group. Conclusions: Our findings suggest that the comorbidity of schizophrenia with panic disorder and social phobia might be characterized by specific neuroanatomical and clinical alterations that may be related to maladaptive emotion regulation related to anxiety. Even thought our findings need to be replicated, our study suggests that the identification of neural abnormalities involved in anxiety, schizophrenia and schizophrenia-anxiety may lead to an improved diagnosis and management of these conditions

    PR034

    No full text
    MRI data of participant PR03

    PR075

    No full text
    MRI data of participant PR07

    Pregnancy-associated changes in resting state brain activity, white matter microstructure, neural metabolite concentrations and grey matter architecture

    No full text
    Raw MRI data, correlation variables and demographic/group information related to the paper ' ‘Mapping the effects of pregnancy on resting state brain activity, white matter microstructure, neural metabolite concentrations and grey matter architecture’ published in Nature Communications. Only data of the participants who have provided permission to share their data are provided

    Brain plasticity in pregnancy and the postpartum period: links to maternal caregiving and mental health

    No full text
    Pregnancy and the postpartum period involve numerous physiological adaptations that enable the development and survival of the offspring. A distinct neural plasticity characterizes the female brain during this period, and dynamic structural and functional changes take place that accompany fundamental behavioral adaptations, stimulating the female to progress from an individual with self-directed needs to being responsible for the care of another life. While many animal studies detail these modifications, an emerging body of research reveals the existence of reproduction-related brain plasticity in human mothers too. Additionally, associations with aspects of maternal caregiving point to adaptive changes that benefit a woman's transition to motherhood. However, the dynamic changes that affect a woman's brain are not merely adaptive, and they likely confer a vulnerability for the development of mental disorders. Here, we review the changes in brain structure and function that a woman undergoes during the peripartum period, outlining associations between these neural alterations and different aspects of maternal care. We additionally discuss peripartum mood disorders and postpartum psychosis, and review the neuroimaging studies that investigate the neural bases of these conditions

    Less Can Be More: Fine Tuning the Maternal Brain

    No full text
    International audiencePAWLUSKI, J.L., Hoekzema, E., Leuner, B., and Lonstein, J.S. Less can be more: Fine tuning the maternal brain. NEUROSCI BIOBEHAV REV (129) XXX-XXX, 2022. Plasticity in the female brain across the lifespan has recently become a growing field of scientific inquiry. This has led to the understanding that the transition to motherhood is marked by some of the most significant changes in brain plasticity in the adult female brain. Perhaps unexpectedly, plasticity occurring in the maternal brain often involves a decrease in brain volume, neurogenesis and glial cell density that presumably optimizes caregiving and other postpartum behaviors. This review summarizes what we know of the 'fine-tuning' of the female brain that accompanies motherhood and highlights the implications of these changes for maternal neurobehavioral health. The first part of the review summarizes structural and functional brain changes in humans during pregnancy and postpartum period with the remainder of the review focusing on neural and glial plasticity during the peripartum period in animal models. The aim of this review is to provide a clear understanding of when 'less is more' in maternal brain plasticity and where future research can focus to improve our understanding of the unique brain plasticity occurring during matrescence

    Regional volumes and spatial volumetric distribution of gray matter in the gender dysphoric brain.

    Full text link
    The sexual differentiation of the brain is primarily driven by gonadal hormones during fetal development. Leading theories on the etiology of gender dysphoria (GD) involve deviations herein. To examine whether there are signs of a sex-atypical brain development in GD, we quantified regional neural gray matter (GM) volumes in 55 female-to-male and 38 male-to-female adolescents, 44 boys and 52 girls without GD and applied both univariate and multivariate analyses. In girls, more GM volume was observed in the left superior medial frontal cortex, while boys had more volume in the bilateral superior posterior hemispheres of the cerebellum and the hypothalamus. Regarding the GD groups, at whole-brain level they differed only from individuals sharing their gender identity but not from their natal sex. Accordingly, using multivariate pattern recognition analyses, the GD groups could more accurately be automatically discriminated from individuals sharing their gender identity than those sharing their natal sex based on spatially distributed GM patterns. However, region of interest analyses indicated less GM volume in the right cerebellum and more volume in the medial frontal cortex in female-to-males in comparison to girls without GD, while male-to-females had less volume in the bilateral cerebellum and hypothalamus than natal boys. Deviations from the natal sex within sexually dimorphic structures were also observed in the untreated subsamples. Our findings thus indicate that GM distribution and regional volumes in GD adolescents are largely in accordance with their respective natal sex. However, there are subtle deviations from the natal sex in sexually dimorphic structures, which can represent signs of a partial sex-atypical differentiation of the brain

    Droge med mladimi na območju Ptuja

    Full text link
    Sex hormones, androgens in particular, are hypothesized to play a key role in the sexual differentiation of the human brain. However, possible direct effects of the sex chromosomes, that is, XX or XY, have not been well studied in humans. Individuals with complete androgen insensitivity syndrome (CAIS), who have a 46,XY karyotype but a female phenotype due to a complete androgen resistance, enable us to study the separate effects of gonadal hormones versus sex chromosomes on neural sex differences. Therefore, in the present study, we compared 46,XY men (n = 30) and 46,XX women (n = 29) to 46,XY individuals with CAIS (n = 21) on a mental rotation task using functional magnetic resonance imaging. Previously reported sex differences in neural activation during mental rotation were replicated in the control groups, with control men showing more activation in the inferior parietal lobe than control women. Individuals with CAIS showed a female-like neural activation pattern in the parietal lobe, indicating feminization of the brain in CAIS. Furthermore, this first neuroimaging study in individuals with CAIS provides evidence that sex differences in regional brain function during mental rotation are most likely not directly driven by genetic sex, but rather reflect gonadal hormone exposure

    Mapping the effects of pregnancy on resting state brain activity, white matter microstructure, neural metabolite concentrations and grey matter architecture

    No full text
    While animal studies have demonstrated a unique reproduction-related neuroplasticity, little is known on the effects of pregnancy on the human brain. Here we investigated whether pregnancy is associated with changes to resting state brain activity, white matter microstructure, neural metabolite concentrations and grey matter architecture using a comprehensive pre-conception cohort study. We show that pregnancy leads to selective and robust changes in neural architecture and neural network organization, which are most pronounced in the Default Mode Network. These neural changes correlated with pregnancy hormones, primarily third-trimester estradiol, while no associations were found with other factors such as osmotic effects, stress and sleep. Furthermore, the changes related to measures of maternal-fetal bonding, nesting behavior and the physiological responsiveness to infant cues, and predicted measures of mother-infant bonding and bonding impairments. These findings suggest there are selective pregnancy-related modifications in brain structure and function that may facilitate peripartum maternal processes of key relevance to the mother-infant dyad
    corecore