6 research outputs found

    Weak population structure and recent demographic expansion of the monogenean parasite Kapentagyrus spp. infecting clupeid fishes of Lake Tanganyika, East Africa

    Get PDF
    Author's accepted version (postprint).This is an Accepted Manuscript of an article published by Elsevier in International Journal for Parasitology on 08/04/2020.Available online: https://www.sciencedirect.com/science/article/pii/S0020751920300606?via%3DihubLake Tanganyika, East Africa, is the oldest and deepest African Great Lake and harbours one of the most diverse fish assemblages on earth. Two clupeid fishes, Limnothrissa miodon and Stolothrissa tanganicae, constitute a major part of the total fish catch, making them indispensable for local food security. Parasites have been proposed as indicators of stock structure in highly mobile pelagic hosts. We examined the monogeneans Kapentagyrus limnotrissae and Kapentagyrus tanganicanus (Dactylogyridae) infecting these clupeids to explore the parasites’ lake-wide population structure and patterns of demographic history. Samples were collected at seven sites distributed across three sub-basins of the lake. Intraspecific morphological variation of the monogeneans (n = 380) was analysed using morphometrics and geomorphometrics of sclerotised structures. Genetic population structure of both parasite species (n = 246) was assessed based on a 415 bp fragment of the mitochondrial cytochrome c oxidase subunit I (COI) gene. Overall, we observed a lack of clear geographical morphological differentiation in both parasites along a north–south axis. This lack of geographical population structure was also reflected by a large proportion of shared haplotypes, and a pattern of seemingly unrestricted gene flow between populations. Significant morphological and genetic differentiation between some populations might reflect temporal differentiation rather than geographical isolation. Overall, the shallow population structure of both species of Kapentagyrus reflects the near-panmictic population structure of both host species as previously reported. Morphological differences related to host species identity of K. tanganicanus were consistent with incipient speciation at the genetic level. Both parasite species experienced a recent demographic expansion, which might be linked to paleohydrological events. Finally, interspecific hybridisation was found in Kapentagyrus, representing the first case in dactylogyrid monogeneans.acceptedVersio

    First genomic study on Lake Tanganyika sprat Stolothrissa tanganicae : a lack of population structure calls for integrated management of this important fisheries target species

    Get PDF
    BackgroundClupeid fisheries in Lake Tanganyika (East Africa) provide food for millions of people in one of the world's poorest regions. Due to climate change and overfishing, the clupeid stocks of Lake Tanganyika are declining. We investigate the population structure of the Lake Tanganyika sprat Stolothrissa tanganicae, using for the first time a genomic approach on this species. This is an important step towards knowing if the species should be managed separately or as a single stock. Population structure is important for fisheries management, yet understudied for many African freshwater species. We hypothesize that distinct stocks of S. tanganicae could be present due to the large size of the lake (isolation by distance), limnological variation (adaptive evolution), or past separation of the lake (historical subdivision). On the other hand, high mobility of the species and lack of obvious migration barriers might have resulted in a homogenous population.ResultsWe performed a population genetic study on wild-caught S. tanganicae through a combination of mitochondrial genotyping (96 individuals) and RAD sequencing (83 individuals). Samples were collected at five locations along a north-south axis of Lake Tanganyika. The mtDNA data had low global FST and, visualised in a haplotype network, did not show phylogeographic structure. RAD sequencing yielded a panel of 3504 SNPs, with low genetic differentiation (F-ST=0.0054; 95% CI: 0.0046-0.0066). PCoA, fineRADstructure and global F-ST suggest a near-panmictic population. Two distinct groups are apparent in these analyses (F-ST=0.1338 95% CI: 0.1239,0.1445), which do not correspond to sampling locations. Autocorrelation analysis showed a slight increase in genetic difference with increasing distance. No outlier loci were detected in the RADseq data.ConclusionOur results show at most very weak geographical structuring of the stock and do not provide evidence for genetic adaptation to historical or environmental differences over a north-south axis. Based on these results, we advise to manage the stock as one population, integrating one management strategy over the four riparian countries. These results are a first comprehensive study on the population structure of these important fisheries target species, and can guide fisheries management.Peer reviewe

    Need for harmonized long-term multi-lake monitoring of African Great Lakes

    Get PDF
    To ensure the long-term sustainable use of African Great Lakes (AGL), and to better understand the functioning of these ecosystems, authorities, managers and scientists need regularly collected scientific data and information of key environmental indicators over multi-years to make informed decisions. Monitoring is regularly conducted at some sites across AGL; while at others sites, it is rare or conducted irregularly in response to sporadic funding or short-term projects/studies. Managers and scientists working on the AGL thus often lack critical long-term data to evaluate and gauge ongoing changes. Hence, we propose a multi-lake approach to harmonize data collection modalities for better understanding of regional and global environmental impacts on AGL. Climate variability has had strong impacts on all AGL in the recent past. Although these lakes have specific characteristics, their limnological cycles show many similarities. Because different anthropogenic pressures take place at the different AGL, harmonized multi-lake monitoring will provide comparable data to address the main drivers of concern (climate versus regional anthropogenic impact). To realize harmonized long-term multi-lake monitoring, the approach will need: (1) support of a wide community of researchers and managers; (2) political goodwill towards a common goal for such monitoring; and (3) sufficient capacity (e.g., institutional, financial, human and logistic resources) for its implementation. This paper presents an assessment of the state of monitoring the AGL and possible approaches to realize a long-term, multi-lake harmonized monitoring strategy. Key parameters are proposed. The support of national and regional authorities is necessary as each AGL crosses international boundaries

    Need for harmonized long-term multi-lake monitoring of African Great Lakes

    No full text
    To ensure the long-term sustainable use of African Great Lakes (AGL), and to better understand the functioning of these ecosystems, authorities, managers and scientists need regularly collected scientific data and information of key environmental indicators over multi-years to make informed decisions. Monitoring is regularly conducted at some sites across AGL; while at others sites, it is rare or conducted irregularly in response to sporadic funding or short-term projects/studies. Managers and scientists working on the AGL thus often lack critical long-term data to evaluate and gauge ongoing changes. Hence, we propose a multi-lake approach to harmonize data collection modalities for better understanding of regional and global environmental impacts on AGL. Climate variability has had strong impacts on all AGL in the recent past. Although these lakes have specific characteristics, their limnological cycles show many similarities. Because different anthropogenic pressures take place at the different AGL, harmonized multi-lake monitoring will provide comparable data to address the main drivers of concern (climate versus regional anthropogenic impact). To realize harmonized long-term multi-lake monitoring, the approach will need: (1) support of a wide community of researchers and managers; (2) political goodwill towards a common goal for such monitoring; and (3) sufficient capacity (e.g., institutional, financial, human and logistic resources) for its implementation. This paper presents an assessment of the state of monitoring the AGL and possible approaches to realize a long-term, multi-lake harmonized monitoring strategy. Key parameters are proposed. The support of national and regional authorities is necessary as each AGL crosses international boundaries

    Need for harmonized long-term multi-lake monitoring of African Great Lakes

    No full text
    corecore