7,958 research outputs found
Direct Hopf Bifurcation in Parametric Resonance of Hybridized Waves
We study parametric resonance of interacting waves having the same wave
vector and frequency. In addition to the well-known period-doubling instability
we show that under certain conditions the instability is caused by a Hopf
bifurcation leading to quasiperiodic traveling waves. It occurs, for example,
if the group velocities of both waves have different signs and the damping is
weak. The dynamics above the threshold is briefly discussed. Examples
concerning ferromagnetic spin waves and surface waves of ferro fluids are
discussed.Comment: Appears in Phys. Rev. Lett., RevTeX file and three postscript
figures. Packaged using the 'uufiles' utility, 33 k
The Effect of Inlet Pressure and Temperature on the Efficiency of a Single-stage Impulse Turbine Having an 11.0-inch Pitch-line Diameter Wheel
Efficiency tests have been conducted on a single-stage impulse engine having an 11-inch pitch-line diameter wheel with inserted buckets and a fabricated nozzle diaphragm. The tests were made to determine the effect of inlet pressure, Inlet temperature, speed, and pressure ratio on the turbine efficiency. An analysis is presented that relates the effect of inlet pressure and temperature to the Reynolds number of the flow. The agreement between the analysis and the experimental data indicates that the changes in turbine efficiency with Inlet pressure and temperature may be principally a Reynolds number effect
Avalanches in the Weakly Driven Frenkel-Kontorova Model
A damped chain of particles with harmonic nearest-neighbor interactions in a
spatially periodic, piecewise harmonic potential (Frenkel-Kontorova model) is
studied numerically. One end of the chain is pulled slowly which acts as a weak
driving mechanism. The numerical study was performed in the limit of infinitely
weak driving. The model exhibits avalanches starting at the pulled end of the
chain. The dynamics of the avalanches and their size and strength distributions
are studied in detail. The behavior depends on the value of the damping
constant. For moderate values a erratic sequence of avalanches of all sizes
occurs. The avalanche distributions are power-laws which is a key feature of
self-organized criticality (SOC). It will be shown that the system selects a
state where perturbations are just able to propagate through the whole system.
For strong damping a regular behavior occurs where a sequence of states
reappears periodically but shifted by an integer multiple of the period of the
external potential. There is a broad transition regime between regular and
irregular behavior, which is characterized by multistability between regular
and irregular behavior. The avalanches are build up by sound waves and shock
waves. Shock waves can turn their direction of propagation, or they can split
into two pulses propagating in opposite directions leading to transient
spatio-temporal chaos. PACS numbers: 05.70.Ln,05.50.+q,46.10.+zComment: 33 pages (RevTex), 15 Figures (available on request), appears in
Phys. Rev.
Stick-Slip Motion and Phase Transition in a Block-Spring System
We study numerically stick slip motions in a model of blocks and springs
being pulled slowly. The sliding friction is assumed to change dynamically with
a state variable. The transition from steady sliding to stick-slip is
subcritical in a single block and spring system. However, we find that the
transition is continuous in a long chain of blocks and springs. The size
distribution of stick-slip motions exhibits a power law at the critical point.Comment: 8 figure
Resonant steps and spatiotemporal dynamics in the damped dc-driven Frenkel-Kontorova chain
Kink dynamics of the damped Frenkel-Kontorova (discrete sine-Gordon) chain
driven by a constant external force are investigated. Resonant steplike
transitions of the average velocity occur due to the competitions between the
moving kinks and their radiated phasonlike modes. A mean-field consideration is
introduced to give a precise prediction of the resonant steps. Slip-stick
motion and spatiotemporal dynamics on those resonant steps are discussed. Our
results can be applied to studies of the fluxon dynamics of 1D
Josephson-junction arrays and ladders, dislocations, tribology and other
fields.Comment: 20 Plain Latex pages, 10 Eps figures, to appear in Phys. Rev.
Recommended from our members
KRAB zinc finger protein diversification drives mammalian interindividual methylation variability.
Most transposable elements (TEs) in the mouse genome are heavily modified by DNA methylation and repressive histone modifications. However, a subset of TEs exhibit variable methylation levels in genetically identical individuals, and this is associated with epigenetically conferred phenotypic differences, environmental adaptability, and transgenerational epigenetic inheritance. The evolutionary origins and molecular mechanisms underlying interindividual epigenetic variability remain unknown. Using a repertoire of murine variably methylated intracisternal A-particle (VM-IAP) epialleles as a model, we demonstrate that variable DNA methylation states at TEs are highly susceptible to genetic background effects. Taking a classical genetics approach coupled with genome-wide analysis, we harness these effects and identify a cluster of KRAB zinc finger protein (KZFP) genes that modifies VM-IAPs in trans in a sequence-specific manner. Deletion of the cluster results in decreased DNA methylation levels and altered histone modifications at the targeted VM-IAPs. In some cases, these effects are accompanied by dysregulation of neighboring genes. We find that VM-IAPs cluster together phylogenetically and that this is linked to differential KZFP binding, suggestive of an ongoing evolutionary arms race between TEs and this large family of epigenetic regulators. These findings indicate that KZFP divergence and concomitant evolution of DNA binding capabilities are mechanistically linked to methylation variability in mammals, with implications for phenotypic variation and putative paradigms of mammalian epigenetic inheritance
Confinement effects on glass forming liquids probed by DMA
Many molecular glass forming liquids show a shift of the glass transition T-g
to lower temperatures when the liquid is confined into mesoporous host
matrices. Two contrary explanations for this effect are given in literature:
First, confinement induced acceleration of the dynamics of the molecules leads
to an effective downshift of T-g increasing with decreasing pore size. Second,
due to thermal mismatch between the liquid and the surrounding host matrix,
negative pressure develops inside the pores with decreasing temperature, which
also shifts T-g to lower temperatures. Here we present dynamic mechanical
analysis measurements of the glass forming liquid salol in Vycor and Gelsil
with pore sizes of d=2.6, 5.0 and 7.5 nm. The dynamic complex elastic
susceptibility data can be consistently described with the assumption of two
relaxation processes inside the pores: A surface induced slowed down relaxation
due to interaction with rough pore interfaces and a second relaxation within
the core of the pores. This core relaxation time is reduced with decreasing
pore size d, leading to a downshift of T-g proportional to 1/d in perfect
agreement with recent differential scanning calorimetry (DSC) measurements.
Thermal expansion measurements of empty and salol filled mesoporous samples
revealed that the contribution of negative pressure to the downshift of T-g is
small (<30%) and the main effect is due to the suppression of dynamically
correlated regions of size xi when the pore size xi approaches
Microstructural characterization of AISI 431 martensitic stainless steel laser-deposited coatings
High cooling rates during laser cladding of stainless steels may alter the microstructure and phase constitution of the claddings and consequently change their functional properties. In this research, solidification structures and solid state phase transformation products in single and multi layer AISI 431 martensitic stainless steel coatings deposited by laser cladding at different processing speeds are investigated by optical microscopy, Scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), orientation imaging microscopy (OIM), ternary phase diagram, Schaeffler and TTT diagrams. The results of this study show how partitionless solidification and higher solidification rates alter the microstructure and phase constitution of martensitic stainless steel laser deposited coatings. In addition, it is shown that while different cladding speeds have no effect on austenite–martensite orientation relationship in the coatings, increasing the cladding speed has resulted in a reduction of hardness in deposited coatings which is in contrast to the common idea about obtaining higher hardness values at higher cladding speeds.
Charge injection instability in perfect insulators
We show that in a macroscopic perfect insulator, charge injection at a
field-enhancing defect is associated with an instability of the insulating
state or with bistability of the insulating and the charged state. The effect
of a nonlinear carrier mobility is emphasized. The formation of the charged
state is governed by two different processes with clearly separated time
scales. First, due to a fast growth of a charge-injection mode, a localized
charge cloud forms near the injecting defect (or contact). Charge injection
stops when the field enhancement is screened below criticality. Secondly, the
charge slowly redistributes in the bulk. The linear instability mechanism and
the final charged steady state are discussed for a simple model and for
cylindrical and spherical geometries. The theory explains an experimentally
observed increase of the critical electric field with decreasing size of the
injecting contact. Numerical results are presented for dc and ac biased
insulators.Comment: Revtex, 7pages, 4 ps figure
- …