108 research outputs found
Star Formation during Galaxy Formation
Young galaxies are clumpy, gas-rich, and highly turbulent. Star formation
appears to occur by gravitational instabilities in galactic disks. The high
dispersion makes the clumps massive and the disks thick. The star formation
rate should be comparable to the gas accretion rate of the whole galaxy,
because star formation is usually rapid and the gas would be depleted quickly
otherwise. The empirical laws for star formation found locally hold at
redshifts around 2, although the molecular gas consumption time appears to be
smaller, and mergers appear to form stars with a slightly higher efficiency
than the majority of disk galaxies.Comment: 14 pages, 1 figure, Ecole Evry Schatzman 2010: Star Formation in the
Local Universe. Lecture 5 of
Outskirts of Distant Galaxies In Absorption
QSO absorption spectroscopy provides a sensitive probe of both the neutral
medium and diffuse ionized gas in the distant Universe. It extends 21cm maps of
gaseous structures around low-redshift galaxies both to lower gas column
densities and to higher redshifts. Combining galaxy surveys with
absorption-line observations of gas around galaxies enables comprehensive
studies of baryon cycles in galaxy outskirts over cosmic time. This Chapter
presents a review of the empirical understanding of the cosmic neutral gas
reservoir from studies of damped Lya absorbers (DLAs). It describes the
constraints on the star formation relation and chemical enrichment history in
the outskirts of distant galaxies from DLA studies. A brief discussion of
available constraints on the ionized circumgalactic gas from studies of lower
column density Lya absorbers and associated ionic absorption transitions is
presented at the end.Comment: 45 pages, 7 figures, invited review, Book chapter in "Outskirts of
Galaxies", Eds. J. H. Knapen, J. C. Lee and A. Gil de Paz, Astrophysics and
Space Science Library, Springer, in pres
The effect of the dynamical state of clusters on gas expulsion and infant mortality
The star formation efficiency (SFE) of a star cluster is thought to be the
critical factor in determining if the cluster can survive for a significant
(>50 Myr) time. There is an often quoted critical SFE of ~30 per cent for a
cluster to survive gas expulsion. I reiterate that the SFE is not the critical
factor, rather it is the dynamical state of the stars (as measured by their
virial ratio) immediately before gas expulsion that is the critical factor. If
the stars in a star cluster are born in an even slightly cold dynamical state
then the survivability of a cluster can be greatly increased.Comment: 6 pages, 2 figures. Review talk given at the meeting on "Young
massive star clusters - Initial conditions and environments", E. Perez, R. de
Grijs, R. M. Gonzalez Delgado, eds., Granada (Spain), September 2007,
Springer: Dordrecht. Replacement to correct mistake in a referenc
The Maximum Mass of Star Clusters
When an universal untruncated star cluster initial mass function (CIMF)
described by a power-law distribution is assumed, the mass of the most massive
star cluster in a galaxy (M_max) is the result of the size-of-sample (SoS)
effect. This implies a dependence of M_max on the total number of star clusters
(N). The SoS effect also implies that M_max within a cluster population
increases with equal logarithmic intervals of age. This is because the number
of clusters formed in logarithmic age intervals increases (assuming a constant
cluster formation rate). This effect has been observed in the SMC and LMC.
Based on the maximum pressure (P_int) inside molecular clouds, it has been
suggested that a physical maximum mass (M_max[phys]) should exist. The theory
predicts that M_max[phys] should be observable, i.e. lower than M_max that
follows from statistical arguments, in big galaxies with a high star formation
rate. We compare the SoS relations in the SMC and LMC with the ones in M51 and
model the integrated cluster luminosity function (CLF) for two cases: 1) M_max
is determined by the SoS effect and 2) M_max=M_max[phys]=constant. The observed
CLF of M51 and the comparison of the SoS relations with the SMC and LMC both
suggest that there exists a M_max[phys] of 5*10^5 M_sun in M51. The CLF of M51
looks very similar to the one observed in the ``Antennae'' galaxies. A direct
comparison with our model suggests that there M_max[phys]=2*10^6 M_sun.Comment: 4 pages, contribution to "Globular Clusters: Guides to Galaxies",
March 6th-10th, 200
Outskirts of Nearby Disk Galaxies: Star Formation and Stellar Populations
The properties and star formation processes in the far-outer disks of nearby
spiral and dwarf irregular galaxies are reviewed. The origin and structure of
the generally exponential profiles in stellar disks is considered to result
from cosmological infall combined with a non-linear star formation law and a
history of stellar migration and scattering from spirals, bars, and random
collisions with interstellar clouds. In both spirals and dwarfs, the far-outer
disks tend to be older, redder and thicker than the inner disks, with the
overall radial profiles suggesting inside-out star formation plus stellar
scattering in spirals, and outside-in star formation with a possible
contribution from scattering in dwarfs. Dwarf irregulars and the far-outer
parts of spirals both tend to be gas dominated, and the gas radial profile is
often non-exponential although still decreasing with radius. The ratio of
H-alpha to far-UV flux tends to decrease with lower surface brightness in these
regions, suggesting either a change in the initial stellar mass function or the
sampling of that function, or a possible loss of H-alpha photons.Comment: 20 pages, 8 figures, Invited review, Book chapter in "Outskirts of
Galaxies", Eds. J. H. Knapen, J. C. Lee and A. Gil de Paz, Astrophysics and
Space Science Library, Springer, in pres
Star Formation on Galactic Scales: Empirical Laws
Empirical star formation laws from the last 20 years are reviewed with a
comparison to simulations. The current form in main galaxy disks has a linear
relationship between the star formation rate per unit area and the molecular
cloud mass per unit area with a timescale for molecular gas conversion of about
2 Gyr. The local ratio of molecular mass to atomic mass scales nearly linearly
with pressure, as determined from the weight of the gas layer in the galaxy. In
the outer parts of galaxies and in dwarf irregular galaxies, the disk can be
dominated by atomic hydrogen and the star formation rate per unit area becomes
directly proportional to the total gas mass per unit area, with a consumption
time of about 100 Gyr. The importance of a threshold for gravitational
instabilities is not clear. Observations suggest such a threshold is not always
important, while simulations generally show that it is. The threshold is
difficult to evaluate because it is sensitive to magnetic and viscous forces,
the presence of spiral waves and other local effects, and the equation of
state.Comment: 16 pages, 2 figures, Ecole Evry Schatzman 2010: Star Formation in the
Local Universe. Lecture 1 of
Dynamics of Inner Galactic Disks: The Striking Case of M100
We investigate gas dynamics in the presence of a double inner Lindblad
resonance within a barred disk galaxy. Using an example of a prominent spiral,
M100, we reproduce the basic central morphology, including four dominant
regions of star formation corresponding to the compression maxima in the gas.
These active star forming sites delineate an inner boundary (so-called nuclear
ring) of a rather broad oval detected in the near infrared. We find that
inclusion of self-gravitational effects in the gas is necessary in order to
understand its behavior in the vicinity of the resonances and its subsequent
evolution. The self-gravity of the gas is also crucial to estimate the effect
of a massive nuclear ring on periodic orbits in the stellar bar.Comment: 11 pages, postscript, compressed, uuencoded. Paper and 4 figures
available at ftp://pa.uky.edu/shlosman/nobel or at
http://www.pa.uky.edu/~shlosman/ . Invited talk at the Centennial Nobel
Symposium on "Barred Galaxies and Circumnuclear Activity," A.Sandquist et al.
(Eds.), Springer-Verlag, in pres
Tidal Dwarf Galaxies at Intermediate Redshifts
We present the first attempt at measuring the production rate of tidal dwarf
galaxies (TDGs) and estimating their contribution to the overall dwarf
population. Using HST/ACS deep imaging data from GOODS and GEMS surveys in
conjunction with photometric redshifts from COMBO-17 survey, we performed a
morphological analysis for a sample of merging/interacting galaxies in the
Extended Chandra Deep Field South and identified tidal dwarf candidates in the
rest-frame optical bands. We estimated a production rate about 1.4 {\times}
10^{-5} per Gyr per comoving volume for long-lived TDGs with stellar mass 3
{\times} 10^{8-9} solar mass at 0.5<z<1.1. Together with galaxy merger rates
and TDG survival rate from the literature, our results suggest that only a
marginal fraction (less than 10%) of dwarf galaxies in the local universe could
be tidally-originated. TDGs in our sample are on average bluer than their host
galaxies in the optical. Stellar population modelling of optical to
near-infrared spectral energy distributions (SEDs) for two TDGs favors a burst
component with age 400/200 Myr and stellar mass 40%/26% of the total,
indicating that a young stellar population newly formed in TDGs. This is
consistent with the episodic star formation histories found for nearby TDGs.Comment: 9 pages, 5 figures, Accepted for publication in Astrophysics & Space
Scienc
The Large Magellanic Cloud: A power spectral analysis of Spitzer images
We present a power spectral analysis of Spitzer images of the Large
Magellanic Cloud. The power spectra of the FIR emission show two different
power laws. At larger scales (kpc) the slope is ~ -1.6, while at smaller ones
(tens to few hundreds of parsecs) the slope is steeper, with a value ~ -2.9.
The break occurs at a scale around 100-200 pc. We interpret this break as the
scale height of the dust disk of the LMC. We perform high resolution
simulations with and without stellar feedback. Our AMR hydrodynamic simulations
of model galaxies using the LMC mass and rotation curve, confirm that they have
similar two-component power-laws for projected density and that the break does
indeed occur at the disk thickness. Power spectral analysis of velocities
betrays a single power law for in-plane components. The vertical component of
the velocity shows a flat behavior for large structures and a power law similar
to the in-plane velocities at small scales. The motions are highly anisotropic
at large scales, with in-plane velocities being much more important than
vertical ones. In contrast, at small scales, the motions become more isotropic.Comment: 8 pages, 4 figures, talk presented at "Galaxies and their Masks",
celebrating Ken Freeman's 70-th birthday, Sossusvlei, Namibia, April 2010. To
be published by Springer, New York, editors D.L. Block, K.C. Freeman, & I.
Puerar
Triggered Star Formation
Triggered star formation in bright rims and shells is reviewed. Shells are
commonly observed in the Milky Way and other galaxies, but most diffuse shells
seen in HI or the infrared do not have obvious triggered star formation. Dense
molecular shells and pillars around HII regions often do have such triggering,
although sometimes it is difficult to see what is triggered and what stars
formed in the gas before the pressure disturbances. Pillar regions without
clear age gradients could have their stars scattered by the gravity of the
heads. Criteria and timescales for triggering are reviewed. The insensitivity
of the average star formation rate in a galaxy to anything but the molecular
mass suggests that triggering is one of many processes that lead to
gravitational collapse and star formation.Comment: 16 pages, 4 figures, Ecole Evry Schatzman 2010: Star Formation in the
Local Universe. Lecture 4 of
- …