108 research outputs found

    Star Formation during Galaxy Formation

    Full text link
    Young galaxies are clumpy, gas-rich, and highly turbulent. Star formation appears to occur by gravitational instabilities in galactic disks. The high dispersion makes the clumps massive and the disks thick. The star formation rate should be comparable to the gas accretion rate of the whole galaxy, because star formation is usually rapid and the gas would be depleted quickly otherwise. The empirical laws for star formation found locally hold at redshifts around 2, although the molecular gas consumption time appears to be smaller, and mergers appear to form stars with a slightly higher efficiency than the majority of disk galaxies.Comment: 14 pages, 1 figure, Ecole Evry Schatzman 2010: Star Formation in the Local Universe. Lecture 5 of

    Outskirts of Distant Galaxies In Absorption

    Full text link
    QSO absorption spectroscopy provides a sensitive probe of both the neutral medium and diffuse ionized gas in the distant Universe. It extends 21cm maps of gaseous structures around low-redshift galaxies both to lower gas column densities and to higher redshifts. Combining galaxy surveys with absorption-line observations of gas around galaxies enables comprehensive studies of baryon cycles in galaxy outskirts over cosmic time. This Chapter presents a review of the empirical understanding of the cosmic neutral gas reservoir from studies of damped Lya absorbers (DLAs). It describes the constraints on the star formation relation and chemical enrichment history in the outskirts of distant galaxies from DLA studies. A brief discussion of available constraints on the ionized circumgalactic gas from studies of lower column density Lya absorbers and associated ionic absorption transitions is presented at the end.Comment: 45 pages, 7 figures, invited review, Book chapter in "Outskirts of Galaxies", Eds. J. H. Knapen, J. C. Lee and A. Gil de Paz, Astrophysics and Space Science Library, Springer, in pres

    The effect of the dynamical state of clusters on gas expulsion and infant mortality

    Get PDF
    The star formation efficiency (SFE) of a star cluster is thought to be the critical factor in determining if the cluster can survive for a significant (>50 Myr) time. There is an often quoted critical SFE of ~30 per cent for a cluster to survive gas expulsion. I reiterate that the SFE is not the critical factor, rather it is the dynamical state of the stars (as measured by their virial ratio) immediately before gas expulsion that is the critical factor. If the stars in a star cluster are born in an even slightly cold dynamical state then the survivability of a cluster can be greatly increased.Comment: 6 pages, 2 figures. Review talk given at the meeting on "Young massive star clusters - Initial conditions and environments", E. Perez, R. de Grijs, R. M. Gonzalez Delgado, eds., Granada (Spain), September 2007, Springer: Dordrecht. Replacement to correct mistake in a referenc

    The Maximum Mass of Star Clusters

    Get PDF
    When an universal untruncated star cluster initial mass function (CIMF) described by a power-law distribution is assumed, the mass of the most massive star cluster in a galaxy (M_max) is the result of the size-of-sample (SoS) effect. This implies a dependence of M_max on the total number of star clusters (N). The SoS effect also implies that M_max within a cluster population increases with equal logarithmic intervals of age. This is because the number of clusters formed in logarithmic age intervals increases (assuming a constant cluster formation rate). This effect has been observed in the SMC and LMC. Based on the maximum pressure (P_int) inside molecular clouds, it has been suggested that a physical maximum mass (M_max[phys]) should exist. The theory predicts that M_max[phys] should be observable, i.e. lower than M_max that follows from statistical arguments, in big galaxies with a high star formation rate. We compare the SoS relations in the SMC and LMC with the ones in M51 and model the integrated cluster luminosity function (CLF) for two cases: 1) M_max is determined by the SoS effect and 2) M_max=M_max[phys]=constant. The observed CLF of M51 and the comparison of the SoS relations with the SMC and LMC both suggest that there exists a M_max[phys] of 5*10^5 M_sun in M51. The CLF of M51 looks very similar to the one observed in the ``Antennae'' galaxies. A direct comparison with our model suggests that there M_max[phys]=2*10^6 M_sun.Comment: 4 pages, contribution to "Globular Clusters: Guides to Galaxies", March 6th-10th, 200

    Outskirts of Nearby Disk Galaxies: Star Formation and Stellar Populations

    Full text link
    The properties and star formation processes in the far-outer disks of nearby spiral and dwarf irregular galaxies are reviewed. The origin and structure of the generally exponential profiles in stellar disks is considered to result from cosmological infall combined with a non-linear star formation law and a history of stellar migration and scattering from spirals, bars, and random collisions with interstellar clouds. In both spirals and dwarfs, the far-outer disks tend to be older, redder and thicker than the inner disks, with the overall radial profiles suggesting inside-out star formation plus stellar scattering in spirals, and outside-in star formation with a possible contribution from scattering in dwarfs. Dwarf irregulars and the far-outer parts of spirals both tend to be gas dominated, and the gas radial profile is often non-exponential although still decreasing with radius. The ratio of H-alpha to far-UV flux tends to decrease with lower surface brightness in these regions, suggesting either a change in the initial stellar mass function or the sampling of that function, or a possible loss of H-alpha photons.Comment: 20 pages, 8 figures, Invited review, Book chapter in "Outskirts of Galaxies", Eds. J. H. Knapen, J. C. Lee and A. Gil de Paz, Astrophysics and Space Science Library, Springer, in pres

    Star Formation on Galactic Scales: Empirical Laws

    Full text link
    Empirical star formation laws from the last 20 years are reviewed with a comparison to simulations. The current form in main galaxy disks has a linear relationship between the star formation rate per unit area and the molecular cloud mass per unit area with a timescale for molecular gas conversion of about 2 Gyr. The local ratio of molecular mass to atomic mass scales nearly linearly with pressure, as determined from the weight of the gas layer in the galaxy. In the outer parts of galaxies and in dwarf irregular galaxies, the disk can be dominated by atomic hydrogen and the star formation rate per unit area becomes directly proportional to the total gas mass per unit area, with a consumption time of about 100 Gyr. The importance of a threshold for gravitational instabilities is not clear. Observations suggest such a threshold is not always important, while simulations generally show that it is. The threshold is difficult to evaluate because it is sensitive to magnetic and viscous forces, the presence of spiral waves and other local effects, and the equation of state.Comment: 16 pages, 2 figures, Ecole Evry Schatzman 2010: Star Formation in the Local Universe. Lecture 1 of

    Dynamics of Inner Galactic Disks: The Striking Case of M100

    Full text link
    We investigate gas dynamics in the presence of a double inner Lindblad resonance within a barred disk galaxy. Using an example of a prominent spiral, M100, we reproduce the basic central morphology, including four dominant regions of star formation corresponding to the compression maxima in the gas. These active star forming sites delineate an inner boundary (so-called nuclear ring) of a rather broad oval detected in the near infrared. We find that inclusion of self-gravitational effects in the gas is necessary in order to understand its behavior in the vicinity of the resonances and its subsequent evolution. The self-gravity of the gas is also crucial to estimate the effect of a massive nuclear ring on periodic orbits in the stellar bar.Comment: 11 pages, postscript, compressed, uuencoded. Paper and 4 figures available at ftp://pa.uky.edu/shlosman/nobel or at http://www.pa.uky.edu/~shlosman/ . Invited talk at the Centennial Nobel Symposium on "Barred Galaxies and Circumnuclear Activity," A.Sandquist et al. (Eds.), Springer-Verlag, in pres

    Tidal Dwarf Galaxies at Intermediate Redshifts

    Full text link
    We present the first attempt at measuring the production rate of tidal dwarf galaxies (TDGs) and estimating their contribution to the overall dwarf population. Using HST/ACS deep imaging data from GOODS and GEMS surveys in conjunction with photometric redshifts from COMBO-17 survey, we performed a morphological analysis for a sample of merging/interacting galaxies in the Extended Chandra Deep Field South and identified tidal dwarf candidates in the rest-frame optical bands. We estimated a production rate about 1.4 {\times} 10^{-5} per Gyr per comoving volume for long-lived TDGs with stellar mass 3 {\times} 10^{8-9} solar mass at 0.5<z<1.1. Together with galaxy merger rates and TDG survival rate from the literature, our results suggest that only a marginal fraction (less than 10%) of dwarf galaxies in the local universe could be tidally-originated. TDGs in our sample are on average bluer than their host galaxies in the optical. Stellar population modelling of optical to near-infrared spectral energy distributions (SEDs) for two TDGs favors a burst component with age 400/200 Myr and stellar mass 40%/26% of the total, indicating that a young stellar population newly formed in TDGs. This is consistent with the episodic star formation histories found for nearby TDGs.Comment: 9 pages, 5 figures, Accepted for publication in Astrophysics & Space Scienc

    The Large Magellanic Cloud: A power spectral analysis of Spitzer images

    Full text link
    We present a power spectral analysis of Spitzer images of the Large Magellanic Cloud. The power spectra of the FIR emission show two different power laws. At larger scales (kpc) the slope is ~ -1.6, while at smaller ones (tens to few hundreds of parsecs) the slope is steeper, with a value ~ -2.9. The break occurs at a scale around 100-200 pc. We interpret this break as the scale height of the dust disk of the LMC. We perform high resolution simulations with and without stellar feedback. Our AMR hydrodynamic simulations of model galaxies using the LMC mass and rotation curve, confirm that they have similar two-component power-laws for projected density and that the break does indeed occur at the disk thickness. Power spectral analysis of velocities betrays a single power law for in-plane components. The vertical component of the velocity shows a flat behavior for large structures and a power law similar to the in-plane velocities at small scales. The motions are highly anisotropic at large scales, with in-plane velocities being much more important than vertical ones. In contrast, at small scales, the motions become more isotropic.Comment: 8 pages, 4 figures, talk presented at "Galaxies and their Masks", celebrating Ken Freeman's 70-th birthday, Sossusvlei, Namibia, April 2010. To be published by Springer, New York, editors D.L. Block, K.C. Freeman, & I. Puerar

    Triggered Star Formation

    Full text link
    Triggered star formation in bright rims and shells is reviewed. Shells are commonly observed in the Milky Way and other galaxies, but most diffuse shells seen in HI or the infrared do not have obvious triggered star formation. Dense molecular shells and pillars around HII regions often do have such triggering, although sometimes it is difficult to see what is triggered and what stars formed in the gas before the pressure disturbances. Pillar regions without clear age gradients could have their stars scattered by the gravity of the heads. Criteria and timescales for triggering are reviewed. The insensitivity of the average star formation rate in a galaxy to anything but the molecular mass suggests that triggering is one of many processes that lead to gravitational collapse and star formation.Comment: 16 pages, 4 figures, Ecole Evry Schatzman 2010: Star Formation in the Local Universe. Lecture 4 of
    corecore