4 research outputs found

    Cell cycle and growth stimuli regulate different steps of RNA polymerase I transcription

    Get PDF
    Transcription of the ribosomal RNA genes (rDNA) by RNA polymerase I (Pol I) is a major control step for ribosome synthesis and is tightly linked to cellular growth. However, the question of whether this process is modulated primarily at the level of transcription initiation or elongation is controversial. Studies in markedly different cell types have identified either initiation or elongation as the major control point. In this study, we have re-examined this question in NIH3T3 fibroblasts using a combination of metabolic labeling of the 47S rRNA, chromatin immunoprecipitation analysis of Pol I and overexpression of the transcription initiation factor Rrn3. Acute manipulation of growth factor levels altered rRNA synthesis rates over 8-fold without changing Pol I loading onto the rDNA. In fact, robust changes in Pol I loading were only observed under conditions where inhibition of rDNA transcription was associated with chronic serum starvation or cell cycle arrest. Overexpression of the transcription initiation factor Rrn3 increased loading of Pol I on the rDNA but failed to enhance rRNA synthesis in either serum starved, serum treated or G0/G1 arrested cells. Together these data suggest that transcription elongation is rate limiting for rRNA synthesis. We propose that transcription initiation is required for rDNA transcription in response to cell cycle cues, whereas elongation controls the dynamic range of rRNA synthesis output in response to acute growth factor modulation

    Drosophila Ribosomal Protein Mutants Control Tissue Growth Non-Autonomously via Effects on the Prothoracic Gland and Ecdysone

    Get PDF
    The ribosome is critical for all aspects of cell growth due to its essential role in protein synthesis. Paradoxically, many Ribosomal proteins (Rps) act as tumour suppressors in Drosophila and vertebrates. To examine how reductions in Rps could lead to tissue overgrowth, we took advantage of the observation that an RpS6 mutant dominantly suppresses the small rough eye phenotype in a cyclin E hypomorphic mutant (cycEJP). We demonstrated that the suppression of cycEJP by the RpS6 mutant is not a consequence of restoring CycE protein levels or activity in the eye imaginal tissue. Rather, the use of UAS-RpS6 RNAi transgenics revealed that the suppression of cycEJP is exerted via a mechanism extrinsic to the eye, whereby reduced Rp levels in the prothoracic gland decreases the activity of ecdysone, the steroid hormone, delaying developmental timing and hence allowing time for tissue and organ overgrowth. These data provide for the first time a rationale to explain the counter-intuitive organ overgrowth phenotypes observed for certain members of the Minute class of Drosophila Rp mutants. They also demonstrate how Rp mutants can affect growth and development cell non-autonomously

    Cell cycle and growth stimuli regulate different steps of RNA polymerase I transcription

    No full text
    Transcription of the ribosomal RNA genes (rDNA) by RNA polymerase I (Pol I) is a major control step for ribosome synthesis and is tightly linked to cellular growth. However, the question of whether this process is modulated primarily at the level of transcription initiation or elongation is controversial. Studies in markedly different cell types have identified either initiation or elongation as the major control point. In this study, we have re-examined this question in NIH3T3 fibroblasts using a combination of metabolic labeling of the 47S rRNA, chromatin immunoprecipitation analysis of Pol I and overexpression of the transcription initiation factor Rrn3. Acute manipulation of growth factor levels altered rRNA synthesis rates over 8-fold without changing Pol I loading onto the rDNA. In fact, robust changes in Pol I loading were only observed under conditions where inhibition of rDNA transcription was associated with chronic serum starvation or cell cycle arrest. Overexpression of the transcription initiation factor Rrn3 increased loading of Pol I on the rDNA but failed to enhance rRNA synthesis in either serum starved, serum treated or G0/G1 arrested cells. Together these data suggest that transcription elongation is rate limiting for rRNA synthesis. We propose that transcription initiation is required for rDNA transcription in response to cell cycle cues, whereas elongation controls the dynamic range of rRNA synthesis output in response to acute growth factor modulationThis work was supported by the National Health and Medical Research Council (NHMRC) of Australia project grants (#1043884, 251608, 566702, 166908, 251688, 509087, 400116, 400120, 566876), NHMRC Program Grant (#1053792) and NIH grants GM069841 and HL077814 awarded to LIR. R.D.H. and R.B.P. were funded by NHMRC Fellowships
    corecore