27 research outputs found

    Self-organization of (001) cubic crystal surfaces

    Full text link
    Self-organization on crystal surface is studied as a two dimensional spinodal decomposition in presence of a surface stress. The elastic Green function is calculated for a (001)(001) cubic crystal surface taking into account the crystal anisotropy. Numerical calculations show that the phase separation is driven by the interplay between domain boundary energy and long range elastic interactions. At late stage of the phase separation process, a steady state appears with different nanometric patterns according to the surface coverage and the crystal elastic constants

    Influence of orbital contributions to the valence band alignment of Bi2O3, Fe2O3, BiFeO3, and Bi0.5Na0.5TiO3

    Get PDF
    The formation of an interface between Bi2O3, Fe2O3, BiFeO3, Bi0.5Na0.5TiO3, and the high work function metallic RuO2 is studied using photoelectron spectroscopy with in situ RuO2 deposition. Schottky barrier heights are derived and the valence band maximum energies of the studied materials are aligned with respect to each other as well as to other functional oxides like SrTiO3 and PbTiO3. The energy band alignment follows systematic trends compared to a large number of oxides, and can be understood in terms of the contribution of Fe 3d and Bi 6s/6p (lone pair) orbitals to electronic states near the valence band maximum. The results indicate that the valence band maxima are largely determined by the local environment of the cations, which allows to estimate valence band maximum energies of oxides with multiple cations from those of their parent binary compounds. The high valence band maximum of BiFeO3 is consistent with reported p-type conduction of acceptor doped material, while the high conduction band minimum makes n-type conduction unlikely

    Platinmetalle

    No full text

    Calcium im Blutserum

    No full text

    Transparent conductive zinc oxide: basics and applications in thin film solar cells

    No full text
    Zinc oxide (ZnO) belongs to the class of transparent conducting oxides which can be used as transparent electrodes in electronic devices or heated windows. In this book the material properties of, the deposition technologies for, and applications of zinc oxide in thin film solar cells are described in a comprehensive manner. Structural, morphological, optical and electronic properties of ZnO are treated in this review. The editors and authors of this book are specialists in deposition, analysis and fabrication of thin-film solar cells and especially of ZnO. This book is intended as an overview and a data collection for students, engineers and scientist

    Electrical and Optical Properties of Amorphous SnO2:Ta Films, Prepared by DC and RF Magnetron Sputtering: A Systematic Study of the Influence of the Type of the Reactive Gas

    No full text
    By reactive magnetron sputtering from a ceramic SnO2:Ta target onto unheated substrates, X-ray amorphous SnO:Ta films were prepared in gas mixtures of Ar/O2(N2O, H2O). The process windows, where the films exhibit the lowest resistivity values, were investigated as a function of the partial pressure of the reactive gases O2, N2O and H2O. We found that all three gases lead to the same minimum resistivity, while the width of the process window is broadest for the reactive gas H2O. While the amorphous films were remarkably conductive (ρ ≈ 5 × 10−3 Ωcm), the films crystallized by annealing at 500 °C exhibit higher resistivities due to grain boundary limited conduction. For larger film thicknesses (d ≳ 150 nm), crystallization occurs already during the deposition, caused by the substrate temperature increase due to the energy influx from the condensing film species and from the plasma (ions, electrons), leading to higher resistivities of these films. The best amorphous SnO2:Ta films had a resistivity of lower than 4 × 10−3 Ωcm, with a carrier concentration of 1.1 × 1020 cm−3, and a Hall mobility of 16 cm2/Vs. The sheet resistance was about 400 Ω/□ for 100 nm films and 80 Ω/□ for 500 nm thick films. The average optical transmittance from 500 to 1000 nm is greater than 76% for 100 nm films, where the films, deposited with H2O as reactive gas, exhibit even a slightly higher transmittance of 80%. These X-ray amorpous SnO2:Ta films can be used as low-temperature prepared transparent and conductive protection layers, for instance, to protect semiconducting photoelectrodes for water splitting, and also, where appropriate, in combination with more conductive TCO films (ITO or ZnO)
    corecore