348 research outputs found
Severe B Cell Deficiency in Mice Lacking the Tec Kinase Family Members Tec and Btk
The cytoplasmic protein tyrosine kinase Tec has been proposed to have important functions in hematopoiesis and lymphocyte signal transduction. Here we show that Tec-deficient mice developed normally and had no major phenotypic alterations of the immune system. To reveal potential compensatory roles of other Tec kinases such as Bruton's tyrosine kinase (Btk), Tec/Btk double-deficient mice were generated. These mice exhibited a block at the B220+CD43+ stage of B cell development and displayed a severe reduction of peripheral B cell numbers, particularly immunoglobulin (Ig)MloIgDhi B cells. Although Tec/Btknull mice were able to form germinal centers, the response to T cell–dependent antigens was impaired. Thus, Tec and Btk together have an important role both during B cell development and in the generation and/or function of the peripheral B cell pool. The ability of Tec to compensate for Btk may also explain phenotypic differences in X-linked immunodeficiency (xid) mice compared with human X-linked agammaglobulinemia (XLA) patients
Multiple Developmental Stage–Specific Enhancers Regulate CD8 Expression in Developing Thymocytes and in Thymus-Independent T Cells
AbstractWe and others have recently identified a CD8 locus enhancer (E8I) that directs expression in mature CD8 single-positive thymocytes and peripheral CD8+ T cells and in extrathymically derived intestinal intraepithelial lymphocytes (IEL). In this study, we show that deletion of E8I by homologous recombination results in reduced CD8αα homodimer expression on IEL. Since CD8 expression on thymus-derived T cells was normal, other enhancers regulate CD8 expression in these cells. By exploiting a transgenic reporter expression assay, we identified three additional enhancers that directed expression in diverse thymocyte subsets and mature T cells but not in CD8αα+ IEL. The results suggest that CD8α expression is primarily regulated by E8I in IEL and by the novel enhancers in the thymus-dependent lineages
Coreceptor gene imprinting governs thymocyte lineage fate
Double-positive (CD4+CD8+) thymocytes differentiate into CD4+ helper T cells and CD8+ cytotoxic T cells. A knock-in approach replacing CD8-coding sequences with CD4 cDNA shows that it is the expression kinetics of CD8, and not the identity of the coreceptor, that governs thymocyte-lineage fate
Transcriptional signatures of Itk-deficient CD3+, CD4+ and CD8+ T-cells
<p>Abstract</p> <p>Background</p> <p>The Tec-family kinase Itk plays an important role during T-cell activation and function, and controls also conventional versus innate-like T-cell development. We have characterized the transcriptome of Itk-deficient CD3<sup>+ </sup>T-cells, including CD4<sup>+ </sup>and CD8<sup>+ </sup>subsets, using Affymetrix microarrays.</p> <p>Results</p> <p>The largest difference between Itk<sup>-/- </sup>and Wt CD3<sup>+ </sup>T-cells was found in unstimulated cells, e.g. for killer cell lectin-like receptors. Compared to anti-CD3-stimulation, anti-CD3/CD28 significantly decreased the number of transcripts suggesting that the CD28 co-stimulatory pathway is mainly independent of Itk. The signatures of CD4<sup>+ </sup>and CD8<sup>+ </sup>T-cell subsets identified a greater differential expression than in total CD3<sup>+ </sup>cells. Cyclosporin A (CsA)-treatment had a stronger effect on transcriptional regulation than Itk-deficiency, suggesting that only a fraction of TCR-mediated calcineurin/NFAT-activation is dependent on Itk. Bioinformatic analysis of NFAT-sites of the group of transcripts similarly regulated by Itk-deficiency and CsA-treatment, followed by chromatin-immunoprecipitation, revealed NFATc1-binding to the <it>Bub1</it>, <it>IL7R, Ctla2a</it>, <it>Ctla2b</it>, and <it>Schlafen1 </it>genes. Finally, to identify transcripts that are regulated by Tec-family kinases in general, we compared the expression profile of Itk-deficient T-cells with that of Btk-deficient B-cells and a common set of transcripts was found.</p> <p>Conclusion</p> <p>Taken together, our study provides a general overview about the global transcriptional changes in the absence of Itk.</p
Arbeitstagung der Konferenz der Einrichtungen für Frauen- und Geschlechterstudien im deutschsprachigen Raum (KEG) 2019
Wrede B, Pache I, Amacker M, Ellmeier A, Schulz D. Arbeitstagung der Konferenz der Einrichtungen für Frauen- und Geschlechterstudien im deutschsprachigen Raum (KEG) 2019. IZGOnZeit - Onlinezeitschrift des Interdisziplinären Zentrums für Geschlechterforschung. 2019;8:100-105
Sustained correction of B-cell development and function in a murine model of X-linked agammaglobulinemia (XLA) using retroviral-mediated gene transfer
X-linked agammaglobulinemia (XLA) is a human immunodeficiency caused by mutations in Bruton tyrosine kinase (Btk) and characterized by an arrest in early B-cell development, near absence of serum immunoglobulin, and recurrent bacteria infections. Using Btk- and Tec-deficient mice (BtkTec-/-) as a model for XLA, we determined if Btk gene therapy could correct this disorder. Bone marrow (BM) from 5-fluorouracil (5FU)-treated BtkTec-/- mice was transduced with a retroviral vector expressing human Btk and transplanted into BtkTec-/- recipients. Mice engrafted with transduced hematopoietic cells exhibited rescue of both primary and peripheral B-lineage development, revocery of peritoneal B1 B cells, and correction of serum immunoglobulin M (IgM) and IgG3 levels. Gene transfer also restored T-independent type II immune responses, and B-cell antigen receptor (BCR) proliferative responses. B-cell progenitors derived from Btk-transduced stem cells exhibited higher levels of Btk expression than non-B cells; and marking studies demonstrated a selective advantage for Btk-transduced B-lineage cells. BM derived from primary recipients also rescued Btk-dependent function in secondary hosts that had received a transplant. Together, these data demonstrate that gene transfer into hematopoietic stem cells can reconstitute Btk-dependent B-cell development and function in vivo, and strongly support the feasibility of pursuing Btk gene transfer for XLA
Antigen-specific clonal expansion and cytolytic effector function of CD8+ T lymphocytes depend on the transcription factor Bcl11b
CD8+ T lymphocytes mediate the immune response to viruses, intracellular bacteria, protozoan parasites, and tumors. We provide evidence that the transcription factor Bcl11b/Ctip2 controls hallmark features of CD8+ T cell immunity, specifically antigen (Ag)-dependent clonal expansion and cytolytic activity. The reduced clonal expansion in the absence of Bcl11b was caused by altered proliferation during the expansion phase, with survival remaining unaffected. Two genes with critical roles in TCR signaling were deregulated in Bcl11b-deficient CD8+ T cells, CD8 coreceptor and Plcγ1, both of which may contribute to the impaired responsiveness. Bcl11b was found to bind the E8I, E8IV, and E8V, but not E8II or E8III, enhancers. Thus, Bcl11b is one of the transcription factors implicated in the maintenance of optimal CD8 coreceptor expression in peripheral CD8+ T cells through association with specific enhancers. Short-lived Klrg1hiCD127lo effector CD8+ T cells were formed during the course of infection in the absence of Bcl11b, albeit in smaller numbers, and their Ag-specific cytolytic activity on a per-cell basis was altered, which was associated with reduced granzyme B and perforin
- …