10,769 research outputs found
Wind tunnel buffet load measuring technique
Indirect force measurement technique estimates unsteady forces acting on elastic model during wind tunnel tests. Measurement of forces is practically insensitive to errors in aeroelastic scaling between model and full-scale structure, simplifying design, fabrication and dynamic calibration
Cosmic rays in the 10(16) to 10(19) eV range from pulsars
The flux is calculated of cosmic rays (CRs) produced by a distribution of pulsars that are: (1) born with rapid rotation rates, (2) slow down as they evolve, and (3) produce energetic nuclei with a characteristic energy proportional to their rotation rates. It is found that, for energy independent escape from the disk of the galaxy, the predicted spectrum will be essentially what is observed between approx 10 to the 16th power to 10 to the 19 power eV if the slow down law as inferred for radio pulsars can be extrapolated to young pulsars with shorter periods
Galactic Cosmic Rays from Supernova Remnants: II Shock Acceleration of Gas and Dust
This is the second paper (the first was astro-ph/9704267) of a series
analysing the Galactic Cosmic Ray (GCR) composition and origin. In this we
present a quantitative model of GCR origin and acceleration based on the
acceleration of a mixture of interstellar and/or circumstellar gas and dust by
supernova remnant blast waves. We present results from a nonlinear shock model
which includes (i) the direct acceleration of interstellar gas-phase ions, (ii)
a simplified model for the direct acceleration of weakly charged dust grains to
energies of order 100keV/amu simultaneously with the gas ions, (iii) frictional
energy losses of the grains colliding with the gas, (iv) sputtering of ions of
refractory elements from the accelerated grains and (v) the further shock
acceleration of the sputtered ions to cosmic ray energies. The calculated GCR
composition and spectra are in good agreement with observations.Comment: to appear in ApJ, 51 pages, LaTeX with AAS macros, 9 postscript
figures, also available from ftp://wonka.physics.ncsu.edu/pub/elliso
Exploratory studies of contact angle hysteresis, wetting of solidified rare gases and surface properties of mercury Final report
Contact angle hysteresis, wetting of solidified rare gases, and surface properties of mercur
Ultrahard spectra of PeV neutrinos from supernovae in compact star clusters
Starburst regions with multiple powerful winds of young massive stars and
supernova remnants are favorable sites for high-energy cosmic ray acceleration.
A supernova shock colliding with a fast wind from a compact cluster of young
stars allows the acceleration of protons to energies well above the standard
limits of diffusive shock acceleration in an isolated SN. The proton spectrum
in such a wind-supernova PeV accelerator is hard with a large flux in the
high-energy-end of the spectrum producing copious gamma-rays and neutrinos in
inelastic nuclear collisions. We argue that SN shocks in the Westerlund 1
cluster in the Milky Way may accelerate protons to about 40 PeV. Once
accelerated, these CRs will diffuse into surrounding dense clouds and produce
neutrinos with fluxes sufficient to explain a fraction of the events detected
by IceCube Observatory from the inner Galaxy.Comment: 10 pages, 7 figures, MNRAS v.453, p.113-121, 201
Morphology of synchrotron emission in young supernova remnants
In the framework of test-particle and cosmic-ray modified hydrodynamics, we
calculate synchrotron emission radial profiles in young ejecta-dominated
supernova remnants (SNRs) evolving in an ambient medium which is uniform in
density and magnetic field. We find that, even without any magnetic field
amplification by Raleigh-Taylor instabilities, the radio synchrotron emission
peaks at the contact discontinuity because the magnetic field is compressed and
is larger there than at the forward shock. The X-ray synchrotron emission
sharply drops behind the forward shock as the highest energy electrons suffer
severe radiative losses.Comment: 8 pages, 6 figures, Accepted for publication in A&
Nonlinear Diffusive Shock Acceleration with Magnetic Field Amplification
We introduce a Monte Carlo model of nonlinear diffusive shock acceleration
allowing for the generation of large-amplitude magnetic turbulence. The model
is the first to include strong wave generation, efficient particle acceleration
to relativistic energies in nonrelativistic shocks, and thermal particle
injection in an internally self-consistent manner. We find that the upstream
magnetic field can be amplified by large factors and show that this
amplification depends strongly on the ambient Alfven Mach number. We also show
that in the nonlinear model large increases in the magnetic field do not
necessarily translate into a large increase in the maximum particle momentum a
particular shock can produce, a consequence of high momentum particles
diffusing in the shock precursor where the large amplified field converges to
the low ambient value. To deal with the field growth rate in the regime of
strong fluctuations, we extend to strong turbulence a parameterization that is
consistent with the resonant quasi-linear growth rate in the weak turbulence
limit. We believe our parameterization spans the maximum and minimum range of
the fluctuation growth and, within these limits, we show that the nonlinear
shock structure, acceleration efficiency, and thermal particle injection rates
depend strongly on the yet to be determined details of wave growth in strongly
turbulent fields. The most direct application of our results will be to
estimate magnetic fields amplified by strong cosmic-ray modified shocks in
supernova remnants.Comment: Accepted in ApJ July 2006, typos corrected in this versio
- …