4 research outputs found

    Identification of optimal assisted aspiration conditions of oocytes for use in porcine in vitro maturation: a re-evaluation of the relationship between the cumulus oocyte complex and oocyte quality

    Get PDF
    The quality of porcine oocytes for use in IVF is commonly graded according to the number of layers of cumulus cells surrounding the oocyte; together these form the cumulus oocyte complex (COC). At least three compact layers of cumulus cells is regarded as important for efficient IVP. To test this, oocytes were scored according to cumulus investment, with grade A representing COCs with three or more cumulus layers including granulosa cell-cumulus oocyte complexes, grade B those with an intact corona radiata surrounded by another layer of cumulus cells and grades C and D representing COCs with lower cumulus cell investment. These oocytes were then monitored for in vitro maturation (IVM), as assessed by tubulin immunostaining for meiotic progression, the development of a cortical granule ring, and by glutathione levels. Results indicate that grading correlates closely with nuclear maturation and cytoplasmic maturation, suggesting that grading oocytes by cumulus investment is a reliable method to predict IVM success. Importantly, Grade A and B oocytes showed no significant differences in any measure and hence using a cut-off of two or more cumulus cell layers may be optimal. We also determined the effect of assisted aspiration for oocyte retrieval, comparing the effect of needle size and applied pressure on the retrieval rate. These data indicated that both variables affected oocyte recovery rates and the quality of recovered oocytes. In combination, these experiments indicate that grade A and B oocytes have a similar developmental potential and that the recovery of oocytes of these grades is maximised by use of an 18-gauge needle and 50mmHg aspiration pressure

    Differential Sperm Motility Mediates the Sex Ratio Drive Shaping Mouse Sex Chromosome Evolution

    Get PDF
    The search for morphological or physiological differences between X- and Y-bearing mammalian sperm has provoked controversy for decades. Many potential differences have been proposed, but none validated, while accumulating understanding of syncytial sperm development has cast doubt on whether such differences are possible even in principle. We present the first ever mammalian experimental model to trace a direct link from a measurable physiological difference between X- and Y-bearing sperm to the resulting skewed sex ratio. We show that in mice with deletions on chromosome Yq, birth sex ratio distortion is due to a relatively greater motility of X-bearing sperm, and not to any aspect of sperm/egg interaction. Moreover, the morphological distortion caused by Yq deletion is more severe in Y-bearing sperm, providing a potential hydrodynamic basis for the altered motility. This reinforces a growing body of work indicating that sperm haploid selection is an important and underappreciated evolutionary force

    Autophagy receptor NDP52 alters DNA conformation to modulate RNA Polymerase II transcription

    Get PDF
    NDP52 is an autophagy receptor involved in the recognition and degradation of invading pathogens and damaged organelles. Although NDP52 was first identified in the nucleus and is expressed throughout the cell, to date, there is no clear nuclear functions for NDP52. Here, we use a multidisciplinary approach to characterise the biochemical properties and nuclear roles of NDP52. We found that NDP52 clusters with RNA Polymerase II (RNAPII) at transcription initiation sites and that its overexpression promotes the formation of additional transcriptional clusters. We also show that depletion of NDP52 impacts overall gene-expression levels in two model mammalian cells, and that transcription inhibition affects the spatial organisation and molecular dynamics of NDP52 in the nucleus. This directly links NDP52 to a role in RNAPII-dependent transcription. Furthermore, we also show that NDP52 binds specifically and with high affinity to double-stranded DNA (dsDNA) and that this interaction leads to changes in DNA structure in vitro. This, together with our proteomics data indicating enrichment for interactions with nucleosome remodelling proteins and DNA structure regulators, suggests a possible function for NDP52 in chromatin regulation. Overall, here we uncover nuclear roles for NDP52 in gene expression and DNA structure regulation
    corecore