20,215 research outputs found

    Exploration of the MSSM with Non-Universal Higgs Masses

    Get PDF
    We explore the parameter space of the minimal supersymmetric extension of the Standard Model (MSSM), allowing the soft supersymmetry-breaking masses of the Higgs multiplets, m_{1,2}, to be non-universal (NUHM). Compared with the constrained MSSM (CMSSM) in which m_{1,2} are required to be equal to the soft supersymmetry-breaking masses m_0 of the squark and slepton masses, the Higgs mixing parameter mu and the pseudoscalar Higgs mass m_A, which are calculated in the CMSSM, are free in the NUHM model. We incorporate accelerator and dark matter constraints in determining allowed regions of the (mu, m_A), (mu, M_2) and (m_{1/2}, m_0) planes for selected choices of the other NUHM parameters. In the examples studied, we find that the LSP mass cannot be reduced far below its limit in the CMSSM, whereas m_A may be as small as allowed by LEP for large tan \beta. We present in Appendices details of the calculations of neutralino-slepton, chargino-slepton and neutralino-sneutrino coannihilation needed in our exploration of the NUHM.Comment: 92 pages LaTeX, 32 eps figures, final version, some changes to figures pertaining to the b to s gamma constrain

    Scalar Mass Bounds in Two Supersymmetric Extended Electroweak Gauge Models

    Full text link
    In two recently proposed supersymmetric extended electroweak gauge models, the reduced Higgs sector at the 100-GeV energy scale consists of only two doublets, but they have quartic scalar couplings different from those of the minimal supersymmetric standard model. In the SU(2) X SU(2) X U(1) model, there is an absolute upper bound of about 145 GeV on the mass of the lightest neutral scalar boson. In the SU(3) X U(1) model, there is only a parameter-dependent upper bound which formally goes to infinity in a particular limitComment: 9 pages (6 figures not included), UCRHEP-T128 (July 1994

    Numerical evaluation of one-loop QCD amplitudes

    Full text link
    We present the publicly available program NGluon allowing the numerical evaluation of primitive amplitudes at one-loop order in massless QCD. The program allows the computation of one-loop amplitudes for an arbitrary number of gluons. The focus of the present article is the extension to one-loop amplitudes including an arbitrary number of massless quark pairs. We discuss in detail the algorithmic differences to the pure gluonic case and present cross checks to validate our implementation. The numerical accuracy is investigated in detail.Comment: Talk given at ACAT 2011 conference in London, 5-9 Septembe

    B-Meson Observables in the Maximally CP-Violating MSSM with Minimal Flavour Violation

    Get PDF
    Additional sources of CP violation in the MSSM may affect B-meson mixings and decays, even in scenarios with minimal flavour violation (MFV). We formulate the maximally CP-violating and minimally flavour-violating (MCPMFV) variant of the MSSM, which has 19 parameters, including 6 phases that violate CP. We then develop a manifestly flavour-covariant effective Lagrangian formalism for calculating Higgs-mediated FCNC observables in the MSSM at large tan(beta), and analyze within the MCPMFV framework FCNC and other processes involving B mesons. We include a new class of dominant subleading contributions due to non-decoupling effects of the third-generation quarks. We present illustrative numerical results that include effects of the CP-odd MCPMFV parameters on Higgs and sparticle masses, the B_s and B_d mass differences, and on the decays B_s --> mu+ mu-, B_u --> tau nu and b --> s gamma. We use these results to derive illustrative constraints on the MCPMFV parameters imposed by D0, CDF, BELLE and BABAR measurements of B mesons, demonstrating how a potentially observable contribution to the CP asymmetry in the b --> s gamma decay may arise in the MSSM with MCPMFV.Comment: 47 pages, 8 eps figures, comments and references added, accepted for publication in Physical Review D, Eq.(3.2) correcte

    Direct Detection of Dark Matter in the MSSM with Non-Universal Higgs Masses

    Full text link
    We calculate dark matter scattering rates in the minimal supersymmetric extension of the Standard Model (MSSM), allowing the soft supersymmetry-breaking masses of the Higgs multiplets, m_{1,2}, to be non-universal (NUHM). Compared with the constrained MSSM (CMSSM) in which m_{1,2} are required to be equal to the soft supersymmetry-breaking masses m_0 of the squark and slepton masses, we find that the elastic scattering cross sections may be up to two orders of magnitude larger than values in the CMSSM for similar LSP masses. We find the following preferred ranges for the spin-independent cross section: 10^{-6} pb \ga \sigma_{SI} \ga 10^{-10} pb, and for the spin-dependent cross section: 10^{-3} pb \ga \sigma_{SD}, with the lower bound on \sigma_{SI} dependent on using the putative constraint from the muon anomalous magnetic moment. We stress the importance of incorporating accelerator and dark matter constraints in restricting the NUHM parameter space, and also of requiring that no undesirable vacuum appear below the GUT scale. In particular, values of the spin-independent cross section another order of magnitude larger would appear to be allowed, for small \tan \beta, if the GUT vacuum stability requirement were relaxed, and much lower cross-section values would be permitted if the muon anomalous magnetic moment constraint were dropped.Comment: 30 pages LaTeX, 40 eps figure

    Waves on Noncommutative Spacetime and Gamma-Ray Bursts

    Get PDF
    Quantum group Fourier transform methods are applied to the study of processes on noncommutative Minkowski spacetime [xi,t]=ıλxi[x^i,t]=\imath\lambda x^i. A natural wave equation is derived and the associated phenomena of {\it in vacuo} dispersion are discussed. Assuming the deformation scale λ\lambda is of the order of the Planck length one finds that the dispersion effects are large enough to be tested in experimental investigations of astrophysical phenomena such as gamma-ray bursts. We also outline a new approach to the construction of field theories on the noncommutative spacetime, with the noncommutativity equivalent under Fourier transform to non-Abelianness of the `addition law' for momentum in Feynman diagrams. We argue that CPT violation effects of the type testable using the sensitive neutral-kaon system are to be expected in such a theory.Comment: 25 page

    Time-Dependent Vacuum Energy Induced by D-Particle Recoil

    Get PDF
    We consider cosmology in the framework of a `material reference system' of D particles, including the effects of quantum recoil induced by closed-string probe particles. We find a time-dependent contribution to the cosmological vacuum energy, which relaxes to zero as ∌1/t2\sim 1/ t^2 for large times tt. If this energy density is dominant, the Universe expands with a scale factor R(t)∌t2R(t) \sim t^2. We show that this possibility is compatible with recent observational constraints from high-redshift supernovae, and may also respect other phenomenological bounds on time variation in the vacuum energy imposed by early cosmology.Comment: 14 pages LATEX, no figure
    • 

    corecore