266 research outputs found
ENERGY ACQUISITION AND ALLOCATION IN PLANTS AND INSECTS: A HYPOTHESIS FOR THE POSSIBLE ROLE OF HORMONES IN INSECT FEEDING PATTERNS
A distributed delay age structure model is presented for plants and insects that describes the dynamics of per capita energy (dry matter) acquisition and allocation patterns, and the within-organism subunit (e.g. leaves, fruit, ova) number dynamics that occur during growth, reproduction, and development. Four species of plants (common bean, cassava, cotton, and tomato) and two species of insects (pea aphid and a ladybird beetle) are modeled. A common acquisition (i.e. functional response) submodel is used to estimate the daily photosynthetic rates in plants and consumption rates in pea aphid and the ladybird beetle. The focus of this work is to capture the essence of the common attributes between trophic levels across this wide range of taxa. The models are compared with field or laboratory data. A hypothesis is proposed for the observed patterns of reproduction in pea aphid and in a ladybird beetl
Redox-Linked Domain Movements in the Catalytic Cycle of Cytochrome P450 Reductase
SummaryNADPH-cytochrome P450 reductase is a key component of the P450 mono-oxygenase drug-metabolizing system. There is evidence for a conformational equilibrium involving large-scale domain motions in this enzyme. We now show, using small-angle X-ray scattering (SAXS) and small-angle neutron scattering, that delivery of two electrons to cytochrome P450 reductase leads to a shift in this equilibrium from a compact form, similar to the crystal structure, toward an extended form, while coenzyme binding favors the compact form. We present a model for the extended form of the enzyme based on nuclear magnetic resonance and SAXS data. Using the effects of changes in solution conditions and of site-directed mutagenesis, we demonstrate that the conversion to the extended form leads to an enhanced ability to transfer electrons to cytochrome c. This structural evidence shows that domain motion is linked closely to the individual steps of the catalytic cycle of cytochrome P450 reductase, and we propose a mechanism for this
Recommended from our members
An isotope dilution model for partitioning of phenylalanine and tyrosine uptake by the liver of lactating dairy cows
An isotope dilution model to describe the partitioning of phenylalanine (PHE) and tyrosine (TYR) in the bovine liver was developed. The model comprises four intracellular and six extracellular pools and various flows connecting these pools and external blood. Conservation of mass principles were applied to generate the fundamental equations describing the behaviour of the system in the steady state. The model was applied to datasets from multi-catheterised dairy cattle during a constant infusion of [1-13C] phenylalanine and [2,3,5,6-2H] tyrosine tracers. Model solutions described the extraction of PHE and TYR from the liver via the portal vein and hepatic artery. In addition, the exchange of free PHE and TYR between extracellular and intracellular pools was explained and the hydroxylation of PHE to TYR was estimated. The model was effective in providing information about the fates of PHE and TYR in the liver and could be used as part of a more complex system describing amino acid metabolism in the whole animal
Perspectives for the detection and measurement of Supersymmetry in the focus point region of mSUGRA models with the ATLAS detector at LHC
This paper discusses the ATLAS potential to study Supersymmetry for the
"Focus-Point" region of the parameter space of mSUGRA models. The potential to
discovery a deviation from Standard Model expectations with the first few
of LHC data was studied using the parametrized simulation of the
ATLAS detector. Several signatures were considered, involving hard jets, large
missing energy, and either -tagged jets, opposite-sign isolated electron or
muon pairs, or top quarks reconstructed exploiting their fully hadronic decays.
With only 1 of data each of these signatures may allow to observe
an excess of events over Standard Model expectation with a statistical
significance exceeding 5 standard deviations. An analytical expression was
derived for the shape of the distribution of the dilepton invariant mass
arising from the three-body leptonic decay of the neutralinos under the
hypothesis of heavy scalars, which is appropriate for the focus-point scenario.
The resulting function was used to fit the distribution of the dilepton
invariant mass obtained with simulated LHC data, and to extract the value of
two kinematic endpoints measuring the and
the mass differences. This information was
used to constrain the MSSM parameter space compatible with the data
The Scale of Cosmic Isotropy
The most fundamental premise to the standard model of the universe, the
Cosmological Principle (CP), states that the large-scale properties of the
universe are the same in all directions and at all comoving positions.
Demonstrating this theoretical hypothesis has proven to be a formidable
challenge. The cross-over scale R_{iso} above which the galaxy distribution
becomes statistically isotropic is vaguely defined and poorly (if not at all)
quantified. Here we report on a formalism that allows us to provide an
unambiguous operational definition and an estimate of R_{iso}. We apply the
method to galaxies in the Sloan Digital Sky Survey (SDSS) Data Release 7,
finding that R_{iso}\sim 150h^{-1} Mpc. Besides providing a consistency test of
the Copernican principle, this result is in agreement with predictions based on
numerical simulations of the spatial distribution of galaxies in cold dark
matter dominated cosmological models.Comment: 15 pages, 4 figures, accepted by JCAP. The text matches the published
versio
Radiative Corrections to Neutrino Mixing and CP Violation in the Minimal Seesaw Model with Leptogenesis
Radiative corrections to neutrino mixing and CP violation are analyzed in the
minimal seesaw model with two heavy right-handed neutrinos. We find that
textures of the effective Majorana neutrino mass matrix are essentially stable
against renormalization effects. Taking account of the
Frampton-Glashow-Yanagida ansatz for the Dirac neutrino Yukawa coupling matrix,
we calculate the running effects of light neutrino masses, lepton flavor mixing
angles and CP-violating phases for both (normal mass hierarchy) and
(inverted mass hierarchy) cases in the standard model and in its
minimal supersymmetric extension. Very instructive predictions for the
cosmological baryon number asymmetry via thermal leptogenesis are also given
with the help of low-energy neutrino mixing quantities.Comment: 21 pages, 6 figures; more references adde
Radiative Decay of a Long-Lived Particle and Big-Bang Nucleosynthesis
The effects of radiatively decaying, long-lived particles on big-bang
nucleosynthesis (BBN) are discussed. If high-energy photons are emitted after
BBN, they may change the abundances of the light elements through
photodissociation processes, which may result in a significant discrepancy
between the BBN theory and observation. We calculate the abundances of the
light elements, including the effects of photodissociation induced by a
radiatively decaying particle, but neglecting the hadronic branching ratio.
Using these calculated abundances, we derive a constraint on such particles by
comparing our theoretical results with observations. Taking into account the
recent controversies regarding the observations of the light-element
abundances, we derive constraints for various combinations of the measurements.
We also discuss several models which predict such radiatively decaying
particles, and we derive constraints on such models.Comment: Published version in Phys. Rev. D. Typos in figure captions correcte
Search for an annual modulation of dark-matter signals with a germanium spectrometer at the Sierra Grande Laboratory
Data collected during three years with a germanium spectrometer at the Sierra
Grande underground laboratory have been analyzed for distinctive features of
annual modulation of the signal induced by WIMP dark matter candidates. The
main motivation for this analysis was the recent suggestion by the DAMA/NaI
Collaboration that a yearly modulation signal could not be rejected at the 90%
confidence level when analyzing data obtained with a high-mass low-background
scintillator detector. We performed two different analyses of the data: First,
the statistical distribution of modulation-significance variables (expected
from an experiment running under the conditions of Sierra Grande) was compared
with the same variables obtained from the data. Second, the data were analyzed
in energy bins as an independent check of the first result and to allow for the
possibility of a crossover in the expected signal. In both cases no
statistically significant deviation from the null result was found, which could
support the hypothesis that the data contain a modulated component. A plot is
also presented to enable the comparison of these results to those of the DAMA
collaboration.Comment: New version accepted by Astroparticle Physics. Changes suggested by
the referee about the theoretical prediction of rates are included.
Conclusions remain unaffected. 14 pages, LaTeX, 7 figures. Uses epsfig macr
Exploring flavor structure of supersymmetry breaking from rare B decays and unitarity triangle
We study effects of supersymmetric particles in various rare B decay
processes as well as in the unitarity triangle analysis. We consider three
different supersymmetric models, the minimal supergravity, SU(5) SUSY GUT with
right-handed neutrinos, and the minimal supersymmetric standard model with U(2)
flavor symmetry. In the SU(5) SUSY GUT with right-handed neutrinos, we consider
two cases of the mass matrix of the right-handed neutrinos. We calculate direct
and mixing-induced CP asymmetries in the b to s gamma decay and CP asymmetry in
B_d to phi K_S as well as the B_s--anti-B_s mixing amplitude for the unitarity
triangle analysis in these models. We show that large deviations are possible
for the SU(5) SUSY GUT and the U(2) model. The pattern and correlations of
deviations from the standard model will be useful to discriminate the different
SUSY models in future B experiments.Comment: revtex4, 36 pages, 10 figure
- …