286 research outputs found

    A Symmetry for the Cosmological Constant

    Full text link
    We study a symmetry, schematically Energy -> - Energy, which suppresses matter contributions to the cosmological constant. The requisite negative energy fluctuations are identified with a "ghost" copy of the Standard Model. Gravity explicitly, but weakly, violates the symmetry, and naturalness requires General Relativity to break down at short distances with testable consequences. If this breakdown is accompanied by gravitational Lorentz-violation, the decay of flat spacetime by ghost production is acceptably slow. We show that inflation works in our scenario and can lead to the initial conditions required for standard Big Bang cosmology.Comment: 18 pages, 3 figures, References correcte

    More about spontaneous Lorentz-violation and infrared modification of gravity

    Full text link
    We consider a model with Lorentz-violating vector field condensates, in which dispersion laws of all perturbations, including tensor modes, undergo non-trivial modification in the infrared. The model is free of ghosts and tachyons at high 3-momenta. At low 3-momenta there are ghosts, and at even lower 3-momenta there exist tachyons. Still, with appropriate choice of parameters, the model is phenomenologically acceptable. Beyond a certain large distance scale and even larger time scale, the gravity of a static source changes from that of General Relativity to that of van Dam--Veltman--Zakharov limit of the Fierz--Pauli theory. Yet the late time cosmological evolution is always determined by the standard Friedmann equation, modulo small correction to the ``cosmological Planck mass'', so the modification of gravity cannot by itself explain the accelerated expansion of the Universe. We argue that the latter property is generic in a wide class of models with condensates.Comment: 15 pages, 1 figure, JHEP3.cls; Added reference

    The Harris-Luck criterion for random lattices

    Get PDF
    The Harris-Luck criterion judges the relevance of (potentially) spatially correlated, quenched disorder induced by, e.g., random bonds, randomly diluted sites or a quasi-periodicity of the lattice, for altering the critical behavior of a coupled matter system. We investigate the applicability of this type of criterion to the case of spin variables coupled to random lattices. Their aptitude to alter critical behavior depends on the degree of spatial correlations present, which is quantified by a wandering exponent. We consider the cases of Poissonian random graphs resulting from the Voronoi-Delaunay construction and of planar, ``fat'' ϕ3\phi^3 Feynman diagrams and precisely determine their wandering exponents. The resulting predictions are compared to various exact and numerical results for the Potts model coupled to these quenched ensembles of random graphs.Comment: 13 pages, 9 figures, 2 tables, REVTeX 4. Version as published, one figure added for clarification, minor re-wordings and typo cleanu

    Fast Neutron Detection with 6Li-loaded Liquid Scintillator

    Full text link
    We report on the development of a fast neutron detector using a liquid scintillator doped with enriched Li-6. The lithium was introduced in the form of an aqueous LiCl micro-emulsion with a di-isopropylnaphthalene-based liquid scintillator. A Li-6 concentration of 0.15 % by weight was obtained. A 125 mL glass cell was filled with the scintillator and irradiated with fission-source neutrons. Fast neutrons may produce recoil protons in the scintillator, and those neutrons that thermalize within the detector volume can be captured on the Li-6. The energy of the neutron may be determined by the light output from recoiling protons, and the capture of the delayed thermal neutron reduces background events. In this paper, we discuss the development of this 6Li-loaded liquid scintillator, demonstrate the operation of it in a detector, and compare its efficiency and capture lifetime with Monte Carlo simulations. Data from a boron-loaded plastic scintillator were acquired for comparison. We also present a pulse-shape discrimination method for differentiating between electronic and nuclear recoil events based on the Matusita distance between a normalized observed waveform and nuclear and electronic recoil template waveforms. The details of the measurements are discussed along with specifics of the data analysis and its comparison with the Monte Carlo simulation

    Parental origin of sequence variants associated with complex diseases

    Get PDF
    To access publisher full text version of this article. Please click on the hyperlink in Additional Links fieldEffects of susceptibility variants may depend on from which parent they are inherited. Although many associations between sequence variants and human traits have been discovered through genome-wide associations, the impact of parental origin has largely been ignored. Here we show that for 38,167 Icelanders genotyped using single nucleotide polymorphism (SNP) chips, the parental origin of most alleles can be determined. For this we used a combination of genealogy and long-range phasing. We then focused on SNPs that associate with diseases and are within 500 kilobases of known imprinted genes. Seven independent SNP associations were examined. Five-one with breast cancer, one with basal-cell carcinoma and three with type 2 diabetes-have parental-origin-specific associations. These variants are located in two genomic regions, 11p15 and 7q32, each harbouring a cluster of imprinted genes. Furthermore, we observed a novel association between the SNP rs2334499 at 11p15 and type 2 diabetes. Here the allele that confers risk when paternally inherited is protective when maternally transmitted. We identified a differentially methylated CTCF-binding site at 11p15 and demonstrated correlation of rs2334499 with decreased methylation of that site.info:eu-repo/grantAgreement/EC/FP7/21807

    Diving into the vertical dimension of elasmobranch movement ecology

    Get PDF
    Knowledge of the three-dimensional movement patterns of elasmobranchs is vital to understand their ecological roles and exposure to anthropogenic pressures. To date, comparative studies among species at global scales have mostly focused on horizontal movements. Our study addresses the knowledge gap of vertical movements by compiling the first global synthesis of vertical habitat use by elasmobranchs from data obtained by deployment of 989 biotelemetry tags on 38 elasmobranch species. Elasmobranchs displayed high intra- and interspecific variability in vertical movement patterns. Substantial vertical overlap was observed for many epipelagic elasmobranchs, indicating an increased likelihood to display spatial overlap, biologically interact, and share similar risk to anthropogenic threats that vary on a vertical gradient. We highlight the critical next steps toward incorporating vertical movement into global management and monitoring strategies for elasmobranchs, emphasizing the need to address geographic and taxonomic biases in deployments and to concurrently consider both horizontal and vertical movements

    Genome-Wide Joint Meta-Analysis of SNP and SNP-by-Smoking Interaction Identifies Novel Loci for Pulmonary Function

    Get PDF

    Meta-analysis of 49 549 individuals imputed with the 1000 Genomes Project reveals an exonic damaging variant in ANGPTL4 determining fasting TG levels

    Get PDF
    Background So far, more than 170 loci have been associated with circulating lipid levels through genomewide association studies (GWAS). These associations are largely driven by common variants, their function is often not known, and many are likely to be markers for the causal variants. In this study we aimed to identify more new rare and low-frequency functional variants associated with circulating lipid levels. Methods We used the 1000 Genomes Project as a reference panel for the imputations of GWAS data from ~60 000 individuals in the discovery stage and ~90 000 samples in the replication stage. Results Our study resu

    Health Care Utilization During the COVID-19 Pandemic Among Individuals Born Preterm

    Get PDF
    Importance: Limited data exist on pediatric health care utilization during the COVID-19 pandemic among children and young adults born preterm. Objective: To investigate differences in health care use related to COVID-19 concerns during the pandemic among children and young adults born preterm vs those born at term. Design, Setting, and Participants: In this cohort study, questionnaires regarding COVID-19 and health care utilization were completed by 1691 mother-offspring pairs from 42 pediatric cohorts in the National Institutes of Health Environmental Influences on Child Health Outcomes Program. Children and young adults (ages 1-18 years) in these analyses were born between 2003 and 2021. Data were recorded by the August 31, 2021, data-lock date and were analyzed between October 2021 and October 2022. Exposures: Premature birth (<37 weeks' gestation). Main Outcomes and Measures: The main outcome was health care utilization related to COVID-19 concerns (hospitalization, in-person clinic or emergency department visit, phone or telehealth evaluations). Individuals born preterm vs term (≥37 weeks' gestation) and differences among preterm subgroups of individuals (<28 weeks', 28-36 weeks' vs ≥37 weeks' gestation) were assessed. Generalized estimating equations assessed population odds for health care used and related symptoms, controlling for maternal age, education, and psychiatric disorder; offspring history of bronchopulmonary dysplasia (BPD) or asthma; and timing and age at COVID-19 questionnaire completion. Results: Data from 1691 children and young adults were analyzed; among 270 individuals born preterm, the mean (SD) age at survey completion was 8.8 (4.4) years, 151 (55.9%) were male, and 193 (71.5%) had a history of BPD or asthma diagnosis. Among 1421 comparison individuals with term birth, the mean (SD) age at survey completion was 8.4 (2.4) years, 749 (52.7%) were male, and 233 (16.4%) had a history of BPD or asthma. Preterm subgroups included 159 individuals (58.5%) born at less than 28 weeks' gestation. In adjusted analyses, individuals born preterm had a significantly higher odds of health care utilization related to COVID-19 concerns (adjusted odds ratio [aOR], 1.70; 95% CI, 1.21-2.38) compared with term-born individuals; similar differences were also seen for the subgroup of individuals born at less than 28 weeks' gestation (aOR, 2.15; 95% CI, 1.40-3.29). Maternal history of a psychiatric disorder was a significant covariate associated with health care utilization for all individuals (aOR, 1.44; 95% CI, 1.17-1.78). Conclusions and Relevance: These findings suggest that during the COVID-19 pandemic, children and young adults born preterm were more likely to have used health care related to COVID-19 concerns compared with their term-born peers, independent of a history of BPD or asthma. Further exploration of factors associated with COVID-19-related health care use may facilitate refinement of care models

    Meta-analysis of type 2 Diabetes in African Americans Consortium

    Get PDF
    Type 2 diabetes (T2D) is more prevalent in African Americans than in Europeans. However, little is known about the genetic risk in African Americans despite the recent identification of more than 70 T2D loci primarily by genome-wide association studies (GWAS) in individuals of European ancestry. In order to investigate the genetic architecture of T2D in African Americans, the MEta-analysis of type 2 DIabetes in African Americans (MEDIA) Consortium examined 17 GWAS on T2D comprising 8,284 cases and 15,543 controls in African Americans in stage 1 analysis. Single nucleotide polymorphisms (SNPs) association analysis was conducted in each study under the additive model after adjustment for age, sex, study site, and principal components. Meta-analysis of approximately 2.6 million genotyped and imputed SNPs in all studies was conducted using an inverse variance-weighted fixed effect model. Replications were performed to follow up 21 loci in up to 6,061 cases and 5,483 controls in African Americans, and 8,130 cases and 38,987 controls of European ancestry. We identified three known loci (TCF7L2, HMGA2 and KCNQ1) and two novel loci (HLA-B and INS-IGF2) at genome-wide significance (4.15 × 10(-94)<P<5 × 10(-8), odds ratio (OR)  = 1.09 to 1.36). Fine-mapping revealed that 88 of 158 previously identified T2D or glucose homeostasis loci demonstrated nominal to highly significant association (2.2 × 10(-23) < locus-wide P<0.05). These novel and previously identified loci yielded a sibling relative risk of 1.19, explaining 17.5% of the phenotypic variance of T2D on the liability scale in African Americans. Overall, this study identified two novel susceptibility loci for T2D in African Americans. A substantial number of previously reported loci are transferable to African Americans after accounting for linkage disequilibrium, enabling fine mapping of causal variants in trans-ethnic meta-analysis studies.Peer reviewe
    corecore