52 research outputs found
The Evolution of the Upper St. Johns River Restoration Project
Source: ICHE Conference Archive - https://mdi-de.baw.de/icheArchiv
Planning and Building a Water Supply Project Near Leogane, Haiti: Experiences of the UCF-EWB
Source: ICHE Conference Archive - https://mdi-de.baw.de/icheArchiv
Recommended from our members
A Genetic Screen Identifies FAN1, a Fanconi Anemia-Associated Nuclease Necessary for DNA Interstrand Crosslink Repair
The Fanconi anemia (FA) pathway is responsible for interstrand crosslink repair. At the heart of this pathway is the FANCI-FAND2 (ID) complex, which, upon ubiquitination by the FA core complex, travels to sites of damage to coordinate repair that includes nucleolytic modification of the DNA urrounding the lesion and translesion synthesis. How the ID complex regulates these events is unknown. Here we describe a shRNA screen that led to the identification of two nucleases necessary for crosslink repair, FAN1 (KIAA1018) and EXDL2. FAN1 colocalizes at sites of DNA damage with the ID complex in a manner dependent on FAN1’s ubiquitin-binding domain (UBZ), the ID complex, and monoubiquitination of FANCD2. FAN1 possesses intrinsic 50 -30 exonuclease activity and endonuclease activity that cleaves nicked and branched structures. We propose that FAN1 is a repair nuclease that is recruited to sites of crosslink damage in part through binding the ubiquitinated ID complex through its UBZ domain
Comparative Genomic Analysis of Vibrio diabolicus and Six Taxonomic Synonyms: A First Look at the Distribution and Diversity of the Expanded Species
Vibrio is a diverse genus of Gammaproteobacteria autochthonous to marine environments worldwide. Vibrio diabolicus and V. antiquarius were originally isolated from deep-sea hydrothermal fields in the East Pacific Rise. These species are closely related to members of the Harveyi clade (e.g., V. alginolyticus and V. parahaemolyticus) that are commonly isolated from coastal systems. This study reports the discovery and draft genome sequence of a novel isolate (Vibrio sp. 939) cultured from Pacific oysters (Crassostrea gigas). Questions surrounding the identity of Vibrio sp. 939 motivated a genome-scale taxonomic analysis of the Harveyi clade. A 49-genome phylogeny based on 1,109 conserved coding sequences and a comparison of average nucleotide identity (ANI) values revealed a clear case of synonymy between Vibrio sp. 939, V. diabolicus Art-Gut C1 and CNCM I-1629, V. antiquarius EX25 and four V. alginolyticus strains (E0666, FF273, TS13, and V2). This discovery expands the V. diabolicus species and makes available six additional genomes for comparative genomic analyses. The distribution of the expanded species is thought to be global given the range of isolation sources (horse mackerel, seawater, sediment, dentex, oyster, artemia and polycheate) and origins (China, India, Greece, United States, East Pacific Rise, and Chile). A subsequent comparative genomic analysis of this new eight-genome subclade revealed a high degree of individual genome plasticity and a large repertoire of genes related to virulence and defense. These findings represent a significant revision to the understanding of V. diabolicus and V. antiquarius as both have long been regarded as distinct species. This first look at the expanded V. diabolicus subclade suggests that the distribution and diversity of this species mirrors that of other Harveyi clade species, which are notable for their ubiquity and diversity
Life-threatening influenza pneumonitis in a child with inherited IRF9 deficiency
Life-threatening pulmonary influenza can be caused by inborn errors of type I and III IFN immunity. We report a 5-yr-old child with severe pulmonary influenza at 2 yr. She is homozygous for a loss-of-function IRF9 allele. Her cells activate gamma-activated factor (GAF) STAT1 homodimers but not IFN-stimulated gene factor 3 (ISGF3) trimers (STAT1/STAT2/IRF9) in response to IFN-α2b. The transcriptome induced by IFN-α2b in the patient's cells is much narrower than that of control cells; however, induction of a subset of IFN-stimulated gene transcripts remains detectable. In vitro, the patient's cells do not control three respiratory viruses, influenza A virus (IAV), parainfluenza virus (PIV), and respiratory syncytial virus (RSV). These phenotypes are rescued by wild-type IRF9, whereas silencing IRF9 expression in control cells increases viral replication. However, the child has controlled various common viruses in vivo, including respiratory viruses other than IAV. Our findings show that human IRF9- and ISGF3-dependent type I and III IFN responsive pathways are essential for controlling IAV
Adaptation of surface water supply to climate change in central Iran
Optimal reservoir operation changes and adaptation strategies for the Zayandeh-Rud River Basin\u27s surface water supply system are examined for a changing climate during the 2015-2044 period. On average, the monthly temperature in the basin is expected to increase by 0.46-0.76 °C and annual precipitation is expected to decrease by 14-38% with climate change, resulting in a reduction of the Zayandeh-Rud\u27s peak stream flow and the amplitude of its seasonal range. Snowfall decrease in winter months will generally lead to an 8-43% reduction in annual stream flow under climate change. A reservoir operation model is developed and optimal reservoir operation strategies are identified for adaptation of the basin\u27s surface water supply to climate change in the face of the increasing water demand. Results indicate that the reservoir drawdown season starts 2 months earlier under climate change. Smaller storage levels and greater water releases must occur to meet the increasing water demand. The optimized water release can provide sufficient water for non-agricultural water demand, but agriculture will experience more severe water shortage under a changing climate. Having the highest vulnerability, the agricultural sector should be the main focus of regional management plans to address the current water challenge and more severe water shortages under climate change
PICK1: a Perinuclear Binding Protein and Substrate for Protein Kinase C Isolated by the Yeast Two-hybrid System
This is the publisher's version, also available electronically from "http://jcb.rupress.org".Protein kinase C (PKC) plays a central role in the control of proliferation and differentiation of a wide range of cell types by mediating the signal transduction response to hormones and growth factors. Upon activation by diacylglycerol, PKC translocates to different subcellular sites where it phosphorylates numerous proteins, most of which are unidentified. We used the yeast two-hybrid system to identify proteins that interact with activated PKC alpha. Using the catalytic region of PKC fused to the DNA binding domain of yeast GAL4 as "bait" to screen a mouse T cell cDNA library in which cDNA was fused to the GAL4 activation domain, we cloned several novel proteins that interact with C-kinase (PICKs). One of these proteins, designated PICK1, interacts specifically with the catalytic domain of PKC and is an efficient substrate for phosphorylation by PKC in vitro and in vivo. PICK1 is localized to the perinuclear region and is phosphorylated in response to PKC activation. PICK1 and other PICKs may play important roles in mediating the actions of PKC
Recommended from our members
Draft genome sequences of 38 Serratia marcescens isolates associated with acroporid serratiosis
Serratia marcescens is a Gram-negative bacterium causally linked to acroporid serratiosis, a form of white pox disease implicated in the decline of elkhorn corals. We report draft genomes of 38 S. marcescens isolates collected from host and nonhost sources. The availability of these genomes will aid future analyses of acroporid serratiosis.This project was funded by NSF-NIH Ecology of Infectious Disease program grants EF1015342 (awarded to Erin K. Lipp and John P. Wares) and EF1015032 (awarded to Kathryn P. Sutherland)
- …