23 research outputs found

    Basalt petrogenesis beneath slow- and ultraslow-spreading Arctic mid-ocean ridges

    Get PDF
    Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution February 2009To explore the ability of melting mafic lithologies to produce alkaline ocean-island basalts (OIB), an experimental study was carried out measuring clinopyroxene (Cpx)- melt and garnet (Gt)-melt partition coefficients during silica-poor garnet pyroxenite melting for a suite of trace elements, including U and Th, at 2.5GPa and 1420-1450°C. Partition coefficients range from 0.0083±0.0006 to 0.020±0.002 for Th and 0.0094±0.0006 to 0.024±0.002 for U in Cpx, and are 0.0032±0.0004 for Th and 0.013±0.002 for U in Gt. Forward-melting calculations using these experimental results to model time-dependent uranium-series isotopes do not support the presence of a fixed quantity of garnet pyroxenite in the source of OIB. To use U-series isotopes to further constrain mantle heterogeneity and the timing and nature of melting and melt transport processes, U-Th-Pa-Ra disequilibria, radiogenic isotopes, and trace-element compositions were measured for the slow-spreading Arctic mid-ocean ridges (MOR). A focused case study of 33 young (<10ka) MOR basalts (MORB) from the shallow endmember of the global ridge system, the Kolbeinsey Ridge (67°05’-70°26’N) found that unaltered Kolbeinsey MORB have universally high (230Th/238U) (1.165-1.296) and relatively uniform (230Th/232Th) (1.196-1.324), ΔNd (8.43- 10.49), 87Sr/86Sr (0.70274-0.70301), ΔHf (16.59-19.56), and Pb isotopes (e.g. 208Pb/206Pb = 2.043-2.095). This suggests a homogeneous mantle source and a long peridotite melting column produces the thick Kolbeinsey crust. Trace element ratios suggest a young, depleted mantle source. Data from the slow- to ultraslow Mohns and Knipovich Ridges north of Kolbeinsey form a sloped array, and (230Th/232Th) correlates systematically with radiogenic isotopic variations. These data are readily reproduced by models for heterogeneous mantle melting. MORB from 85ÂșE on the global ultraslow-spreading endmember Gakkel Ridge are homogeneously depleted with low (230Th/238U) and high (226Ra/230Th) that lie along a global negative correlation. Arctic data support a global mantle temperature control on mean (230Th/238U).This work was made possible through funding support from the National Defense Science and Engineering Graduate Fellowship Program, from the Academic Programs Office, from the WHOI and MIT student travel assistance funds, and from National Science Foundation grant OCE-0422278 to K.W.W.S

    pyUserCalc: A Revised Jupyter Notebook Calculator for Uranium-Series Disequilibria in Basalts

    Get PDF
    Meaningful analysis of uranium-series isotopic disequilibria in basaltic lavas relies on the use of complex forward numerical models like dynamic melting (McKenzie, 1985, https://doi.org/10.1016/0012- 821x(85)90001-9) and equilibrium porous flow (Spiegelman & Elliott, 1993, https://doi.org/10.1016/0012- 821x(93)90155-3). Historically, such models have either been solved analytically for simplified scenarios, such as constant melting rate or constant solid/melt trace element partitioning throughout the melting process, or have relied on incremental or numerical calculators with limited power to solve problems and/or restricted availability. The most public numerical solution to reactive porous flow, UserCalc (Spiegelman, 2000, https:// doi.org/10.1029/1999gc000030) was maintained on a private institutional server for nearly two decades, but that approach has been unsustainable in light of modern security concerns. Here, we present a more long-lasting solution to the problems of availability, model sophistication and flexibility, and long-term access in the form of a cloud-hosted, publicly available Jupyter notebook. Similar to UserCalc, the new notebook calculates U-series disequilibria during time-dependent, equilibrium partial melting in a one-dimensional porous flow regime where mass is conserved. In addition, we also provide a new disequilibrium transport model which has the same melt transport model as UserCalc, but approximates rate-limited diffusive exchange of nuclides between solid and melt using linear kinetics. The degree of disequilibrium during transport is controlled by a Damköhler number, allowing the full spectrum of equilibration models from complete fractional melting (Da = 0 ) to equilibrium transport (Da = ∞)

    Corrigendum to “Testing pyroxenite versus peridotite sources for marine basalts using U-series isotopes” [Lithos 332–333 (2019) 226–244]

    Get PDF
    The authors regret that a small error in the dynamic melting Matlab script used for this paper produced erroneous results for some of the included modeling outcomes. We have written an updated modeling program in python, which can be accessed in the ENKI and pyUserCalc public data repository (https://gitlab.com/ENKI-portal/pyUsercalc/). Although the corrected results shown in revised versions of Figs. S3, S4, S8, S9, and S10 now appear quite different from the original publication, however, we find that when restricted to plausible scenarios of interest, our conclusions overall have not significantly changed. Some details of our results and discussion require corrections, however

    Testing pyroxenite versus peridotite sources for marine basalts using U-series isotopes

    Get PDF
    Geochemically enriched signatures in global oceanic basalts have long indicated a heterogeneous mantle source, but the role of lithologic heterogeneity in producing mantle partial melts, particularly fertile pyroxenite rocks, remains unclear. Uranium-series disequilibria in basalts are particularly sensitive to the increased garnet mode and melting rates of pyroxenite rocks, making the system a useful indicator of mantle lithologic heterogeneity in the melt region for oceanic basalts. Here we summarize evidence for the presence and importance of pyroxenite rocks in the upper mantle and their role in melt generation of mid-ocean ridge basalts and ocean island basalts, with a synthesis of U-series disequilibrium systematics in oceanic basalts and implications for global lithologic heterogeneity of the upper mantle. We further synthesize the melt modeling approaches for the interpretation of U-series disequilibria in basalts and demonstrate the use of numerical solution models for time-dependent reactive porous flow and dynamic melting during decompression of a two-lithology mantle in thermal equilibrium. Our model outcomes corroborate prior interpretations in favor of reactive porous flow and two-porosity transport for relatively homogeneous, peridotite-dominated mantle regimes, and further support contributions of pyroxenite partial melts to aggregated melts in order to reproduce the heterogeneous global basalt data. To most accurately predict the conditions of melting by comparison with measured data, two-lithology melting calculations should carefully consider the role of thermal equilibrium, mineral/melt partitioning, non-linear variations in mineral modes, and degree of melting during the melting process

    Melt generation beneath Arctic Ridges: Implications from Ule

    Get PDF
    We present new 238U-230Th-226Ra-210Pb, 235U-231Pa, and Nd, Sr, Hf, and Pb isotope data for the slow- to ultraslow-spreading Mohns, Knipovich, and Gakkel Ridges. Combined with previous work, our data from the Arctic Ridges cover the full range of axial depths from the deep northernmost Gakkel Ridge shallowing upwards to the Knipovich, Mohns, and Kolbeinsey Ridges north of Iceland. Age-constrained samples from the Mohns and Knipovich Ridges have (230Th/238U) activity ratios ranging from 1.165 to 1.30 and 1.101 to 1.225, respectively. The high 230Th excesses of Kolbeinsey, Mohns, and Knipovich mid-ocean ridge basalts (MORB) are erupted from ridges producing relatively thin (Mohns, Knipovich) to thick (Kolbeinsey) oceanic crust with evidence for sources ranging from mostly peridotite (Kolbeinsey) to eclogite-rich mantle (Mohns, Knipovich). Age-constrained lavas from 85ÂșE on the Gakkel Ridge, on the other hand, overlie little to no crust and range from small (~5%) 230Th excesses to small 238U excesses (~5%). The strong negative correlation between (230Th/238U) values vs. axial ridge depth among Arctic ridge basalts is controlled not only by solidus depth influence on 238U-230Th disequilibria, but also by variations in mantle source lithology and depth to the base of the lithosphere, which is expected to vary at ultra-slow spreading ridges. Small 231Pa excesses (65% excess) in age constrained basalts support the presence of eclogite in the mantle source for this region. Conversely, the ultraslow-spreading Gakkel Ridge basalts are homogeneous, with Sr, Nd, and Hf radiogenic isotopic signatures indicative of a long time-averaged depleted mantle source. The Gakkel samples have minimum (226 Ra/230Th) ratios ranging from 3.07 to 3.65 ± 3%, which lie along and extend the global negative correlation between 226Ra and 230Th excesses observed in MORB. The new 230Th-226Ra data support a model for global MORB production in which deep melts record interaction with shallower materials. This scenario requires either mixing with shallow-derived melts, or melt-rock reaction with shallower rocks in the lithosphere or crust

    The state of the Martian climate

    Get PDF
    60°N was +2.0°C, relative to the 1981–2010 average value (Fig. 5.1). This marks a new high for the record. The average annual surface air temperature (SAT) anomaly for 2016 for land stations north of starting in 1900, and is a significant increase over the previous highest value of +1.2°C, which was observed in 2007, 2011, and 2015. Average global annual temperatures also showed record values in 2015 and 2016. Currently, the Arctic is warming at more than twice the rate of lower latitudes

    Humanistic psychotherapy research 1990-2015 : from methodological innovation to evidence-supported treatment outcomes and beyond

    Get PDF
    Over the past twenty five years, humanistic psychotherapy (HP) researchers have actively contributed to the development and implementation of innovative practice-informed research measures and coding systems. Qualitative and quantitative research findings, including meta-analyses, support the identification of HP approaches as evidence-based treatments for a variety of psychological conditions. Implications for future psychotherapy research, training and practice are discussed in terms of addressing the persistent disjunction between significant HP research productivity and relatively low support for HP approaches in university-based clinical training programs, funding agencies and government-supported clinical guidelines. Finally, specific recommendations are provided to further enhance and expand the impact of humanistic psychotherapy research for clinical training programs and the development of treatment guidelines

    Assessing Origins of End-Triassic Tholeiites From Eastern North America Using Hafnium Isotopes

    No full text
    The driving processes responsible for producing the Central Atlantic Magmatic Province, the Large Igneous Province associated with end-Triassic rifting of Pangea, remain largely debated. Because their compositions encompass most of the Central Atlantic basalt spectrum, tholeiites from southern Eastern North America are considered pivotal for identifying magma origins. New(176)Hf/Hf-177 measurements for 201 Ma Eastern North American tholeiites dominantly record a local petrogenetic history. Their epsilon(Hf)ratios, corrected to an emplacement age of 201 Ma (-7.85 to +5.86), form a positive but shallowly sloped array slightly deviating from the terrestrial array on a epsilon(Hf)versus epsilon(Nd)diagram. Comparison of(176)Hf/Hf-177 to other isotope ratios and trace elements helps to rule out several petrogenetic scenarios, particularly mixing of melts from global depleted or enriched mantle components. In contrast, partial melting of subduction-metasomatized mantle can explain the parental magma composition for southern Eastern North America. Such metasomatism likely occurred during Paleozoic subduction around Pangea and may have been dominated by sediment-derived fluid reactions. The observed(176)Hf/Hf-177 versus(143)Nd/Nd-144 array may reflect subsequent assimilation of lower continental crust, perhaps together with limited direct melting of recycled continental crust in the asthenosphere. The proposed recycling scenario does not specifically support or preclude a mantle plume origin for the Central Atlantic Magmatic Province but instead points toward the presence of a distinct local mantle source and crustal assimilation processes during magma transport. Detailed understanding of these local effects is needed in order to more accurately understand the origins of Large Igneous Provinces
    corecore