62 research outputs found
Constructions of diagonal quartic and sextic surfaces with infinitely many rational points
In this note we construct several infinite families of diagonal quartic
surfaces \begin{equation*} ax^4+by^4+cz^4+dw^4=0, \end{equation*} where
with infinitely many rational points and
satisfying the condition . In particular, we present an
infinite family of diagonal quartic surfaces defined over \Q with Picard
number equal to one and possessing infinitely many rational points. Further, we
present some sextic surfaces of type , , , or
, with infinitely many rational points.Comment: revised version will appear in International Journal of Number Theor
Implicit Simulations using Messaging Protocols
A novel algorithm for performing parallel, distributed computer simulations
on the Internet using IP control messages is introduced. The algorithm employs
carefully constructed ICMP packets which enable the required computations to be
completed as part of the standard IP communication protocol. After providing a
detailed description of the algorithm, experimental applications in the areas
of stochastic neural networks and deterministic cellular automata are
discussed. As an example of the algorithms potential power, a simulation of a
deterministic cellular automaton involving 10^5 Internet connected devices was
performed.Comment: 14 pages, 3 figure
Black holes admitting a Freudenthal dual
The quantised charges x of four dimensional stringy black holes may be
assigned to elements of an integral Freudenthal triple system whose
automorphism group is the corresponding U-duality and whose U-invariant quartic
norm Delta(x) determines the lowest order entropy. Here we introduce a
Freudenthal duality x -> \tilde{x}, for which \tilde{\tilde{x}}=-x. Although
distinct from U-duality it nevertheless leaves Delta(x) invariant. However, the
requirement that \tilde{x} be integer restricts us to the subset of black holes
for which Delta(x) is necessarily a perfect square. The issue of higher-order
corrections remains open as some, but not all, of the discrete U-duality
invariants are Freudenthal invariant. Similarly, the quantised charges A of
five dimensional black holes and strings may be assigned to elements of an
integral Jordan algebra, whose cubic norm N(A) determines the lowest order
entropy. We introduce an analogous Jordan dual A*, with N(A) necessarily a
perfect cube, for which A**=A and which leaves N(A) invariant. The two
dualities are related by a 4D/5D lift.Comment: 32 pages revtex, 10 tables; minor corrections, references adde
Hard and easy instances of L-Tromino tilings
In this work we study tilings of regions in the square lattice with L-shaped trominoes. Deciding the existence of a tiling with L-trominoes for an arbitrary region in general is NP-complete, nonetheless, we identify restrictions to the problem where it either remains NP-complete or has a polynomial time algorithm. First, we characterize the possibility of when an Aztec rectangle has an L-tromino tiling, and hence also an Aztec diamond; if an Aztec rectangle has an unknown number of defects or holes, however, the problem of deciding a tiling is NP-complete. Then, we study tilings of arbitrary regions where only 180∘ rotations of L-trominoes are available. For this particular case we show that deciding the existence of a tiling remains NP-complete; yet, if a region does not contain so-called “forbidden polyominoes” as subregions, then there exists a polynomial time algorithm for deciding a tiling
Thermodynamics of Mesoscopic Vortex Systems in 1+1 Dimensions
The thermodynamics of a disordered planar vortex array is studied numerically
using a new polynomial algorithm which circumvents slow glassy dynamics. Close
to the glass transition, the anomalous vortex displacement is found to agree
well with the prediction of the renormalization-group theory. Interesting
behaviors such as the universal statistics of magnetic susceptibility
variations are observed in both the dense and dilute regimes of this mesoscopic
vortex system.Comment: 4 pages, REVTEX, 6 figures included. Comments and suggestions can be
sent to [email protected]
Arithmetic properties of blocks of consecutive integers
This paper provides a survey of results on the greatest prime factor, the
number of distinct prime factors, the greatest squarefree factor and the
greatest m-th powerfree part of a block of consecutive integers, both without
any assumption and under assumption of the abc-conjecture. Finally we prove
that the explicit abc-conjecture implies the Erd\H{o}s-Woods conjecture for
each k>2.Comment: A slightly corrected and extended version of a paper which will
appear in January 2017 in the book From Arithmetic to Zeta-functions
published by Springe
Boundary correlation functions of the six-vertex model
We consider the six-vertex model on an square lattice with the
domain wall boundary conditions. Boundary one-point correlation functions of
the model are expressed as determinants of matrices, generalizing
the known result for the partition function. In the free fermion case the
explicit answers are obtained. The introduced correlation functions are closely
related to the problem of enumeration of alternating sign matrices and domino
tilings.Comment: 20 pages, 2 figures, typos correcte
The Geometry and Moduli of K3 Surfaces
These notes will give an introduction to the theory of K3 surfaces. We begin
with some general results on K3 surfaces, including the construction of their
moduli space and some of its properties. We then move on to focus on the theory
of polarized K3 surfaces, studying their moduli, degenerations and the
compactification problem. This theory is then further enhanced to a discussion
of lattice polarized K3 surfaces, which provide a rich source of explicit
examples, including a large class of lattice polarizations coming from elliptic
fibrations. Finally, we conclude by discussing the ample and Kahler cones of K3
surfaces, and give some of their applications.Comment: 34 pages, 2 figures. (R. Laza, M. Schutt and N. Yui, eds.
Equidistribution of Heegner Points and Ternary Quadratic Forms
We prove new equidistribution results for Galois orbits of Heegner points
with respect to reduction maps at inert primes. The arguments are based on two
different techniques: primitive representations of integers by quadratic forms
and distribution relations for Heegner points. Our results generalize one of
the equidistribution theorems established by Cornut and Vatsal in the sense
that we allow both the fundamental discriminant and the conductor to grow.
Moreover, for fixed fundamental discriminant and variable conductor, we deduce
an effective surjectivity theorem for the reduction map from Heegner points to
supersingular points at a fixed inert prime. Our results are applicable to the
setting considered by Kolyvagin in the construction of the Heegner points Euler
system
- …