19 research outputs found

    Cystic fibrosis population carrier screening: 2004 revision of American College of Medical Genetics mutation panel

    Get PDF
    Group recommended a panel of mutations and variants that should be tested to determine carrier status within the CFTR gene as a part of population screening programs.1,2 This was initially done in response to the recommendations of an NIH CF Consensus Conference that CF carrier screening be consid-ered by all couples for use before conception or prenatally.3 At that time, the Working Group recognized limitations in our understanding of the population frequencies of several CF al-leles and proposed to review mutation distribution data after the first two years of the program. In 2002, as part of an ongo-ing effort to ensure that the cystic fibrosis carrier screening programs are current with respect to the scientific literature and other available data and practices, we initiated a second review of data on the distribution of mutations in different ethnic groups and we began to assess whether providers wer

    Pan-ethnic carrier screening and prenatal diagnosis for spinal muscular atrophy: clinical laboratory analysis of >72 400 specimens

    Get PDF
    Spinal muscular atrophy (SMA) is a leading inherited cause of infant death with a reported incidence of ∼1 in 10 000 live births and is second to cystic fibrosis as a common, life-shortening autosomal recessive disorder. The American College of Medical Genetics has recommended population carrier screening for SMA, regardless of race or ethnicity, to facilitate informed reproductive options, although other organizations have cited the need for additional large-scale studies before widespread implementation. We report our data from carrier testing (n=72 453) and prenatal diagnosis (n=121) for this condition. Our analysis of large-scale population carrier screening data (n=68 471) demonstrates the technical feasibility of high throughput testing and provides mutation carrier and allele frequencies at a level of accuracy afforded by large data sets. In our United States pan-ethnic population, the calculated a priori carrier frequency of SMA is 1/54 with a detection rate of 91.2%, and the pan-ethnic disease incidence is calculated to be 1/11 000. Carrier frequency and detection rates provided for six major ethnic groups in the United States range from 1/47 and 94.8% in the Caucasian population to 1/72 and 70.5% in the African American population, respectively. This collective experience can be utilized to facilitate accurate pre- and post-test counseling in the settings of carrier screening and prenatal diagnosis for SMA

    Optimal Bail and the Value of Freedom: Evidence from the Philadelphia Bail Experiment

    Full text link

    Survey of the Fragile X Syndrome CGG Repeat and the Short-Tandem-Repeat and Single-Nucleotide-Polymorphism Haplotypes in an African American Population

    Get PDF
    Previous studies have shown that specific short-tandem-repeat (STR) and single-nucleotide-polymorphism (SNP)–based haplotypes within and among unaffected and fragile X white populations are found to be associated with specific CGG-repeat patterns. It has been hypothesized that these associations result from different mutational mechanisms, possibly influenced by the CGG structure and/or cis-acting factors. Alternatively, haplotype associations may result from the long mutational history of increasing instability. To understand the basis of the mutational process, we examined the CGG-repeat size, three flanking STR markers (DXS548-FRAXAC1-FRAXAC2), and one SNP (ATL1) spanning 150 kb around the CGG repeat in unaffected (n=637) and fragile X (n=63) African American populations and compared them with unaffected (n=721) and fragile X (n=102) white populations. Several important differences were found between the two ethnic groups. First, in contrast to that seen in the white population, no associations were observed among the African American intermediate or “predisposed” alleles (41–60 repeats). Second, two previously undescribed haplotypes accounted for the majority of the African American fragile X population. Third, a putative “protective” haplotype was not found among African Americans, whereas it was found among whites. Fourth, in contrast to that seen in whites, the SNP ATL1 was in linkage equilibrium among African Americans, and it did not add new information to the STR haplotypes. These data indicate that the STR- and SNP-based haplotype associations identified in whites probably reflect the mutational history of the expansion, rather than a mutational mechanism or pathway

    Consensus characterization of 16 FMR1 reference materials: A consortium study

    No full text
    Fragile X syndrome, which is caused by expansion of a (CGG)n repeat in the FMR1 gene, occurs in approximately 1:3500 males and causes mental retardation/behavioral problems. Smaller (CGG)n repeat expansions in FMR1, premutations, are associated with premature ovarian failure and fragile X-associated tremor/ataxia syndrome. An FMR1-sizing assay is technically challenging because of high GC content of the (CGG)n repeat, the size limitations of conventional PCR, and a lack of reference materials available for test development/validation and routine quality control. The Centers for Disease Control and Prevention and the Association for Molecular Pathology, together with the genetic testing community, have addressed the need for characterized fragile X mutation reference materials by developing characterized DNA samples from 16 cell lines with repeat lengths representing important phenotypic classes and diagnostic cutoffs. The alleles in these materials were characterized by consensus analysis in nine clinical laboratories. The information generated from this study is available on the Centers for Disease Control and Prevention and Coriell Cell Repositories websites. DNA purified from these cell lines is available to the genetics community through the Coriell Cell Repositories. The public availability of these reference materials should help support accurate clinical fragile X syndrome testing. Copyright © American Society for Investigative Pathology and the Association for Molecular Pathology

    Development of Genomic Reference Materials for Cystic Fibrosis Genetic Testing

    No full text
    The number of different laboratories that perform genetic testing for cystic fibrosis is increasing. However, there are a limited number of quality control and other reference materials available, none of which cover all of the alleles included in commercially available reagents or platforms. The alleles in many publicly available cell lines that could serve as reference materials have neither been confirmed nor characterized. The Centers for Disease Control and Prevention-based Genetic Testing Reference Material Coordination Program, in collaboration with members of the genetic testing community as well as Coriell Cell Repositories, have characterized an extended panel of publicly available genomic DNA samples that could serve as reference materials for cystic fibrosis testing. Six cell lines [containing the following mutations: E60X (c.178G>T), 444delA (c.312delA), G178R (c.532G>C), 1812–1G>A (c.1680–1G>A), P574H (c.1721C>A), Y1092X (c.3277C>A), and M1101K (c.3302T>A)] were selected from those existing at Coriell, and seven [containing the following mutations: R75X (c.223C>T), R347H (c.1040G>A), 3876delA (c.3744delA), S549R (c.1646A>C), S549N (c.1647G>A), 3905insT (c.3773_3774insT), and I507V (c.1519A>G)] were created. The alleles in these materials were confirmed by testing in six different volunteer laboratories. These genomic DNA reference materials will be useful for quality assurance, proficiency testing, test development, and research and should help to assure the accuracy of cystic fibrosis genetic testing in the future. The reference materials described in this study are all currently available from Coriell Cell Repositories

    Development of Genomic DNA Reference Materials for Genetic Testing of Disorders Common in People of Ashkenazi Jewish Descent

    No full text
    Many recessive genetic disorders are found at a higher incidence in people of Ashkenazi Jewish (AJ) descent than in the general population. The American College of Medical Genetics and the American College of Obstetricians and Gynecologists have recommended that individuals of AJ descent undergo carrier screening for Tay Sachs disease, Canavan disease, familial dysautonomia, mucolipidosis IV, Niemann-Pick disease type A, Fanconi anemia type C, Bloom syndrome, and Gaucher disease. Although these recommendations have led to increased test volumes and number of laboratories offering AJ screening, well-characterized genomic reference materials are not publicly available. The Centers for Disease Control and Prevention-based Genetic Testing Reference Materials Coordination Program, in collaboration with members of the genetic testing community and Coriell Cell Repositories, have developed a panel of characterized genomic reference materials for AJ genetic testing. DNA from 31 cell lines, representing many of the common alleles for Tay Sachs disease, Canavan disease, familial dysautonomia, mucolipidosis IV, Niemann-Pick disease type A, Fanconi anemia type C, Bloom syndrome, Gaucher disease, and glycogen storage disease, was prepared by the Repository and tested in six clinical laboratories using three different PCR-based assay platforms. A total of 33 disease alleles was assayed and 25 different alleles were identified. These characterized materials are publicly available from Coriell and may be used for quality control, proficiency testing, test development, and research
    corecore