70 research outputs found

    Clear Aligner Therapy vs. Traditional Brackets on Smile Arc

    Get PDF
    Background and Objectives: More so than ever, the public is becoming exceedingly aware of esthetics, and will evaluate their treatment outcome based upon the improvement to their smile and overall enhancement of their facial appearance. Smile arc is considered to be a key component of facial esthetics. Literature has demonstrated that orthodontic treatment mechanics utilizing traditional brackets and wires can cause flattening of the smile arc and that smiles with flatter arcs are judged to be less attractive. The aim of this study was to determine whether clear aligner therapy can help to preserve or improve the smile arc when compared to traditional bracket orthodontics. Experimental Design and Methods: A sample of 98 subjects that had completed comprehensive orthodontic treatment (50 treated using clear aligners, 48 treated using traditional orthodontic brackets) and had existing pre and post-treatment posed smiling photographs, were selected. 15 orthodontic experts (8 residents and 7 WVU faculty orthodontists) were asked to view a presentation of all the pre and post-treatment smiling photos and to evaluate whether orthodontic treatment had: a) improved the smile arc, b) maintained or had no clinically significant effect on the smile arc, or c) flattened the smile arc. Data was assessed to determine whether there was a difference in orthodontic treatment outcome, specifically smile arc, using the aforementioned treatment modalities. The data was analyzed using chi squared analysis, a generalized linear mixed model analysis, as well as probability testing. Results: The results of analyses for 12 out of 15 raters demonstrated that there was a statistically significant association between treatment modality and smile arc evaluation. When all raters were considered collectively, they evaluated 17.3% of clear aligner treated subjects to have flattened smile arcs compared to 49.7% of bracket treated subjects. (p Conclusions: There is a significant effect of orthodontic treatment modality on smile arc outcome evaluation by orthodontic experts. Orthodontic expert raters evaluated a significantly lower percentage of clear aligner treated subjects to have flattened smile arcs compared to bracket treated subjects and a significantly higher percentage of clear aligner subjects to have improved smile arcs compared to bracket treated subjects. Patients treated with clear aligners have a higher probability of being evaluated to have improved or maintained smile arcs compared to those treated with brackets

    Using GIS to establish a public library consumer health collection

    Get PDF
    BACKGROUND: Learning the exact demographic characteristics of a neighborhood in which a public library serves, assists the collection development librarian in building an appropriate collection. Gathering that demographic information can be a lengthy process, and then formatting the information for the neighborhood in question becomes arduous. As society ages and the methods for health care evolve, people may take charge of their own health. With this prospectus, public libraries should consider creating a consumer health collection to assist the public in their health care needs. Using neighborhood demographic information can inform the collection development librarians as to the dominant age groups, sex, and races within the neighborhood. With this information, appropriate consumer health materials may be assembled in the public library. METHODS: In order to visualize the demographics of a neighborhood, the computer program ArcView GIS (geographic information systems) was used to create maps for specified areas. The neighborhood data was taken from the U.S. Census Department's annual census and library addresses were accumulated through a free database. After downloading the census block information from the data was manipulated with ArcView GIS and queried to produce maps displaying the requested neighborhood demographics to view in respect to libraries. RESULTS: ArcView GIS produced maps displaying public libraries and requested demographics. After viewing the maps the collection development librarian can see exactly what populations are served by the library and adjust the library's collection accordingly. CONCLUSIONS: ArcView GIS can be used to produce maps displaying the communities that libraries serve, spot boundaries, be it "man-made or natural," that exist prohibiting customer service, and assist collection development librarians in justifying their purchases for a dedicated consumer health collection or resources in general

    An assessment of the potential impacts of climate change on the freshwater habitats of Indiana, U.S.A.

    Get PDF
    Recent climate-driven, physico-chemical changes documented in aquatic systems throughout the world are expected to intensify in the future. Specifically, changes in key environmental attributes of aquatic systems, such as water quantity, clarity, temperatures, ice cover, seasonal flow regimes, external loading, and oxygen content, will undoubtedly have a broad set of direct and indirect ecological consequences. Some anticipated impacts may be similar across different aquatic ecosystems, while others may be system-specific. Here, we review the potential effects of climatic changes for different freshwater habitats within the state of Indiana, USA, a Midwestern state with diverse land and water features. Given this heterogeneity and that the state is among the southernmost states of the US Midwest, evaluation of freshwater habitats of Indiana provides a useful perspective on potential impacts of climate change. In our study, we first review expected or anticipated changes to physico-chemical and habitat conditions in wetlands, lotic systems, small glacial lakes and Lake Michigan. We then highlight anticipated responses of select aquatic biota to these changes. We describe how climatic changes may interact with other anthropogenic stressors affecting freshwater habitats and consider the potential for evolutionary adaptation of freshwater aquatic organisms to mediate any responses. Given anticipated changes, we suggest aquatic ecosystem managers take a precautionary approach broadly applicable in temperate regions to (a) conserve a diversity of aquatic habitats, (b) enhance species diversity and both inter- and intra-population genetic variation, and (c) limit stressors which may exacerbate the risk of decline for aquatic biota

    Aquatic Ecosystems in a Shifting Indiana Climate: A Report from the Indiana Climate Change Impacts Assessment

    Get PDF
    Indiana is home to many types of aquatic ecosystems, including lakes, rivers, streams, wetlands and temporary (ephemeral) pools, which provide habitats for a wide range of plants and animals. These ecosystems will experience changes in water quantity, water temperature, ice cover, water clarity and oxygen content as the state’s temperature and rainfall patterns shift. The plants and animals living in these aquatic ecosystems will undergo changes that will vary based on the species and the specific places they inhabit. It is challenging to know precisely how organisms will respond to changes in climate. Effects on one species create a difficult-to-predict chain reaction that potentially influences other species in the same ecosystem. Some organisms will adapt and evolve to survive, or even thrive, as the climate changes, but they will have to adjust to more than just the changes in climate. They will also respond to changes in a wide variety of other environmental factors that affect them, including invasive species, habitat destruction, contaminants, nutrient runoff, and land management decisions. While these complicated interactions make it challenging to predict the long-term fate of Indiana’s aquatic species, enough is known about climate-related stressors to help managers develop strategies to avoid the most critical outcomes, hopefully avoiding species loss. This report from the Indiana Climate Change Impacts Assessment (IN CCIA) uses climate projections for the state to explore the potential threats to Indiana’s aquatic ecosystems and describes potential management implications and opportunities

    Integrating forest structural diversity measurement into ecological research

    Get PDF
    The measurement of forest structure has evolved steadily due to advances in technology, methodology, and theory. Such advances have greatly increased our capacity to describe key forest structural elements and resulted in a range of measurement approaches from traditional analog tools such as measurement tapes to highly derived and computationally intensive methods such as advanced remote sensing tools (e.g., lidar, radar). This assortment of measurement approaches results in structural metrics unique to each method, with the caveat that metrics may be biased or constrained by the measurement approach taken. While forest structural diversity (FSD) metrics foster novel research opportunities, understanding how they are measured or derived, limitations of the measurement approach taken, as well as their biological interpretation is crucial for proper application. We review the measurement of forest structure and structural diversity—an umbrella term that includes quantification of the distribution of functional and biotic components of forests. We consider how and where these approaches can be used, the role of technology in measuring structure, how measurement impacts extend beyond research, and current limitations and potential opportunities for future research

    A theoretical framework for the ecological role of three-dimensional structural diversity

    Get PDF
    The three-dimensional (3D) physical aspects of ecosystems are intrinsically linked to ecological processes. Here, we describe structural diversity as the volumetric capacity, physical arrangement, and identity/traits of biotic components in an ecosystem. Despite being recognized in earlier ecological studies, structural diversity has been largely overlooked due to an absence of not only a theoretical foundation but also effective measurement tools. We present a framework for conceptualizing structural diversity and suggest how to facilitate its broader incorporation into ecological theory and practice. We also discuss how the interplay of genetic and environmental factors underpin structural diversity, allowing for a potentially unique synthetic approach to explain ecosystem function. A practical approach is then proposed in which scientists can test the ecological role of structural diversity at biotic–environmental interfaces, along with examples of structural diversity research and future directions for integrating structural diversity into ecological theory and management across scales

    Expression of APOBEC3G/3F and G-to-A Hypermutation Levels in HIV-1-Infected Children with Different Profiles of Disease Progression

    Get PDF
    OBJECTIVE: Increasing evidence has accumulated showing the role of APOBEC3G (A3G) and 3F (A3F) in the control of HIV-1 replication and disease progression in humans. However, very few studies have been conducted in HIV-infected children. Here, we analyzed the levels of A3G and A3F expression and induced G-to-A hypermutation in a group of children with distinct profiles of disease progression. METHODOLOGY/PRINCIPAL FINDINGS: Perinatally HIV-infected children were classified as progressors or long-term non-progressors according to criteria based on HIV viral load and CD4 T-cell counts over time. A group of uninfected control children were also enrolled in the study. PBMC proviral DNA was assessed for G-to-A hypermutation, whereas A3G and A3F mRNA were isolated and quantified through TaqManÂź real-time PCR. No correlation was observed between disease progression and A3G/A3F expression or hypermutation levels. Although all children analyzed showed higher expression levels of A3G compared to A3F (an average fold of 5 times), a surprisingly high A3F-related hypermutation rate was evidenced in the cohort, irrespective of the child's disease progression profile. CONCLUSION: Our results contribute to the current controversy as to whether HIV disease progression is related to A3G/A3F enzymatic activity. To our knowledge, this is the first study analyzing A3G/F expression in HIV-infected children, and it may pave the way to a better understanding of the host factors governing HIV disease in the pediatric setting

    HLA class I and II diversity contributes to the etiologic heterogeneity of non-Hodgkin lymphoma subtypes

    Get PDF
    A growing number of loci within the human leukocyte antigen (HLA) region have been implicated in non-Hodgkin lymphoma (NHL) etiology. Here, we test a complementary hypothesis of "heterozygote advantage" regarding the role of HLA and NHL, whereby HLA diversity is beneficial and homozygous HLA loci are associated with increased disease risk. HLA alleles at class I and II loci were imputed from genome-wide association studies (GWAS) using SNP2HLA for: 3,617 diffuse large B-cell lymphomas (DLBCL), 2,686 follicular lymphomas (FL), 2,878 chronic lymphocytic leukemia/small lymphocytic lymphomas (CLL/SLL), 741 marginal zone lymphomas (MZL), and 8,753 controls of European descent. Both DLBCL and MZL risk were elevated with homozygosity at class I HLA-B and -C loci (OR DLBCL=1.31, 95% CI=1.06-1.60; OR MZL=1.45, 95% CI=1.12-1.89) and class II HLA-DRB1 locus (OR DLBCL=2.10, 95% CI=1.24-3.55; OR MZL= 2.10, 95% CI=0.99-4.45). Increased FL risk was observed with the overall increase in number of homozygous HLA class II loci (p-trend<0.0001, FDR=0.0005). These results support a role for HLA zygosity in NHL etiology and suggests that distinct immune pathways may underly the etiology of the different NHL subtypes

    Harnessing the NEON data revolution to advance open environmental science with a diverse and data-capable community

    Get PDF
    It is a critical time to reflect on the National Ecological Observatory Network (NEON) science to date as well as envision what research can be done right now with NEON (and other) data and what training is needed to enable a diverse user community. NEON became fully operational in May 2019 and has pivoted from planning and construction to operation and maintenance. In this overview, the history of and foundational thinking around NEON are discussed. A framework of open science is described with a discussion of how NEON can be situated as part of a larger data constellation—across existing networks and different suites of ecological measurements and sensors. Next, a synthesis of early NEON science, based on >100 existing publications, funded proposal efforts, and emergent science at the very first NEON Science Summit (hosted by Earth Lab at the University of Colorado Boulder in October 2019) is provided. Key questions that the ecology community will address with NEON data in the next 10 yr are outlined, from understanding drivers of biodiversity across spatial and temporal scales to defining complex feedback mechanisms in human–environmental systems. Last, the essential elements needed to engage and support a diverse and inclusive NEON user community are highlighted: training resources and tools that are openly available, funding for broad community engagement initiatives, and a mechanism to share and advertise those opportunities. NEON users require both the skills to work with NEON data and the ecological or environmental science domain knowledge to understand and interpret them. This paper synthesizes early directions in the community’s use of NEON data, and opportunities for the next 10 yr of NEON operations in emergent science themes, open science best practices, education and training, and community building
    • 

    corecore